Topics in Catalysis

, Volume 44, Issue 3, pp 409–417 | Cite as

Effect of microstructure on the electrochemical behavior of Pt/YSZ electrodes

  • A. Jaccoud
  • G. Fóti
  • R. Wüthrich
  • H. Jotterand
  • Ch. Comninellis
Article

Two types of O2,Pt/YSZ electrode preparation (Pt/YSZ cermet and sputtered platinum film) have been characterized by SEM and by cyclic voltammetry and chronoamperometry at 450 °C in 20 kPa oxygen. Cyclic voltammetry on the cermet and on the as-sputtered non-porous film electrode evidenced the characteristics of the PtOx/Pt couple. The corresponding redox reaction occurs at the metal/electrolyte interface and it manifests itself by an anodic wave and one of more cathodic peaks in the voltammogram. Heat treatment of the sputtered electrode at 700 °C in oxygen atmosphere resulted in a porous structure by coalescence of the film. Cyclic voltammetry of the porous film electrode featured the characteristics of the O2/O2− couple, i.e. the redox reaction of gaseous oxygen occurring at the tpb. Chronoamperometry at anodic potentials showed similar features for both electrode preparations: an initial inhibition, a current peak and a slow activation, the latter being related to the phenomenon of electrochemical promotion of catalysis.

Keywords

Pt/YSZ cermet electrode Pt film electrode microstructure cyclic voltammetry chronoamperometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skubal, L.R., Vogt, M.C. 2004Proc.SPIE – Int. Soc. Optical Eng.558645Google Scholar
  2. 2.
    Hibino, T., Kuwahara, Y., Otsuka, T., Ishida, N., Oshima, T. 1998Solid State Ionics107217CrossRefGoogle Scholar
  3. 3.
    V. Kordesch and J.C.T. De Olivera, in: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A12, (Wiley, New York, 1989) Fuel CellsGoogle Scholar
  4. 4.
    Tao, G., Sridhar, K.R., Chan, C.L. 2004Solid State Ionics175615CrossRefGoogle Scholar
  5. 5.
    Vayenas, C.G., Bebelis, S., Pliangos, C., Brosda, S., Tsiplakides, D. 2001Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion, and Metal-Support InteractionsKluwer Academic/Plenum PublishersNew YorkGoogle Scholar
  6. 6.
    Verkerk, M.J., Middelhuis, B.J., Burggraaf, A.J. 1982Solid State Ionics6159CrossRefGoogle Scholar
  7. 7.
    Sasaki, J., Mizusaki, J., Yamauchi, S., Fueki, K. 1981Solid State Ionics3–4531CrossRefGoogle Scholar
  8. 8.
    Mizusaki, J., Amano, K., Yamauchi, S., Fueki, K. 1987Solid State Ionics22313CrossRefGoogle Scholar
  9. 9.
    Mizusaki, J., Amano, K., Yamauchi, S., Fueki, K. 1987Solid State Ionics22323CrossRefGoogle Scholar
  10. 10.
    Mitterdorfer, A., Gauckler, L.J. 1999Solid State Ionics120211CrossRefGoogle Scholar
  11. 11.
    Mitterdorfer, A., Gauckler, L.J. 1999Solid State Ionics117187CrossRefGoogle Scholar
  12. 12.
    Luerssen, B., Janek, J., Imbihl, R. 2001Solid State Ionics141–142701CrossRefGoogle Scholar
  13. 13.
    Goge, M., Heggestad, K., Gouet, M. 1986Solid State Ionics18–191228CrossRefGoogle Scholar
  14. 14.
    Schindler, K., Schmeisser, D., Vohrer, U., Wiemhofer, H.D., Gopel, W. 1989Sens. Actuators17555CrossRefGoogle Scholar
  15. 15.
    Poppe, J., Völkening, S., Schaak, A., Janek, J., Imbihl, R. 2000Phys. Chem. Chem. Phys.15241CrossRefGoogle Scholar
  16. 16.
    Jaccoud, A., Fóti, G., Comninellis, Ch. 2006Electrochim. Acta511264CrossRefGoogle Scholar
  17. 17.
    Tsaofang Chao, , Walsh, K.J., Fedkiw, P.S. 1991Solid State Ionics47277CrossRefGoogle Scholar
  18. 18.
    Breiter, M.W., Leeb, K., Fafilek, G. 1997J. Electroanal. Chem.434129CrossRefGoogle Scholar
  19. 19.
    Yi, J., Kaloyannis, A., Vayenas, C.G. 1993Electrochim. Acta382533CrossRefGoogle Scholar
  20. 20.
    Yoon, S.P., Nam, S.W., Kim, S.-G., Hong, S.-A., Hyun, S.-H. 2003J. Power Sour.11527CrossRefGoogle Scholar
  21. 21.
    Yoon, S.P., Nam, S.W., Han, J., Lim, T.-H., Hong, S.-A., Hyun, S.-H. 2004Solid State Ionics1661CrossRefGoogle Scholar
  22. 22.
    Kenjo, T., Yamakoshi, Y., Wada, K. 1993J. Electrochem. Soc.1402151CrossRefGoogle Scholar
  23. 23.
    Berry, R.J. 1978Surf. Sci.76415CrossRefGoogle Scholar
  24. 24.
    Sridhar, S., Stancovski, V., Pal, U. 1997Solid State Ionics10017CrossRefGoogle Scholar
  25. 25.
    Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M.P., Park, Y.-S. 2004Electrochim. Acta491451Google Scholar
  26. 26.
    Fleig, J., Jamnik, J. 2005J. Electrochem. Soc.152E138CrossRefGoogle Scholar
  27. 27.
    Vayenas, C.G., Pitselis, G.E. 2001Ind. Eng. Chem.404209CrossRefGoogle Scholar
  28. 28.
    Siebert, E. 1994Electrochim. Acta391621CrossRefGoogle Scholar
  29. 29.
    Shkerin, S.N., Gormsen, S., Mogensen, M. 2004Russ. J. Electrochem.40136CrossRefGoogle Scholar
  30. 30.
    Shkerin, S.N., Gormsen, S., Primdahl, S., Mogensen, M. 2003Russ. J. Electrochem.391058CrossRefGoogle Scholar
  31. 31.
    Schouler, E.J.L., Kleitz, M. 1987J. Electrochem. Soc.1341045CrossRefGoogle Scholar
  32. 32.
    Angerstein-Kozlowska, H., Conway, B.E., Sharp, W.B.A. 1973J. Electroanal. Chem.439CrossRefGoogle Scholar
  33. 33.
    Vetter, K.J., Schultze, J.W. 1972J. Electroanal. Chem.34131Google Scholar
  34. 34.
    Manen, P.A., Weewer, R., Wit, H.W. 1992J. Electrochem. Soc.1391130CrossRefGoogle Scholar
  35. 35.
    Takao Murase and T. Yoshimura, Pat. Nr. 5130002, Method of processing oxygen concentration sensor by applying AC current, and the thus processed sensor, 1992Google Scholar
  36. 36.
    Barbucci, A., Bozzo, R., Cerisola, G., Costamagna, P. 2002Electrochim. Acta472183CrossRefGoogle Scholar
  37. 37.
    El Roustom, B., Fóti, G., Comninellis, Ch. 2005Electrochem. Comm.7398CrossRefGoogle Scholar
  38. 38.
    Fóti, G., Stankovic, V., Bolzonella, I., Comninellis, Ch. 2002J. Electroanal. Chem.532191CrossRefGoogle Scholar
  39. 39.
    Pizzini, S., Bianchi, M., Colombo, P., Torchio, S. 1973J. Appl. Electrochem.3153CrossRefGoogle Scholar
  40. 40.
    Burke, L.D., Roche, M.B.C. 1982J. Electroanal. Chem.137175CrossRefGoogle Scholar
  41. 41.
    McCabe, R.W., Wong, C., Woo, H.S. 1988J. Catal.114354CrossRefGoogle Scholar
  42. 42.
    Angerstein-Kozlowska, H., Conway, B.E. 1979J. Electroanal. Chem.951CrossRefGoogle Scholar
  43. 43.
    Bay, L., Jacobsen, T. 1997Solid State Ionics93201CrossRefGoogle Scholar
  44. 44.
    Jacobsen, T., Bay, L. 2002Electrochim. Acta472177CrossRefGoogle Scholar
  45. 45.
    Jacobsen, T., Zachau-Christiansen, B., Bay, L., Juhl Jorgensen, M. 2001Electrochim. Acta461019CrossRefGoogle Scholar
  46. 46.
    Karpachev, S.V., Ovchinnikov, Y.M. 1969Russ. J. Electrochem.5200Google Scholar
  47. 47.
    Bauerle, J.E. 1969J. Phys. Chem. Solids302657CrossRefGoogle Scholar
  48. 48.
    Shkerin, S.N. 2004Russ. J. Electrochem.40510CrossRefGoogle Scholar
  49. 49.
    Zwilling, V., Aucouturier, M., Darque-Ceretti, E. 1999Electrochim. Acta45921CrossRefGoogle Scholar
  50. 50.
    Hwang, C.-P., Yeh, C.-T. 1999J. Catal.18248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. Jaccoud
    • 1
  • G. Fóti
    • 1
  • R. Wüthrich
    • 2
  • H. Jotterand
    • 3
  • Ch. Comninellis
    • 1
  1. 1.Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Institute of Manufacturing Systems and RoboticsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Institute of Physics of the Complex MatterEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations