Electrochemical catalysts for hydrocarbon combustion
- 80 Downloads
- 10 Citations
Two series of electrochemical catalysts were prepared from sputtered Pt thin films onto two kinds of electrolyte membranes, 8 mol% Y2O3-stabilized ZrO2 (YSZ), an O2− conducting oxide and Na3Zr2Si2PO12 (NASICON), a Na+ one; respectively. The thickness of the Pt films varied from 8 to 120 nm. Therefore, the Pt loading was extremely low. The catalytic activity of Pt/YSZ and Pt/NASICON systems has been investigated between 200 and 500 °C for propane and propene, respectively. In spite of the low Pt loading, the Pt/YSZ electrochemical catalysts exhibited high activity for propane combustion. Furthermore, the catalytic activity can be in-situ controlled by applying electrical polarisation with high Faradaic efficiency (103). The catalytic rate of propene deep oxidation on Pt/NASICON electrochemical catalyst was found to be limited by the number of active sites, which is low on very thin Pt films. Moreover, initial anodic polarisation indicate that Na+ ions are already present on the top surface of Pt, probably proceeding from the preliminary stabilisation treatment of Pt in the reactive mixture. Nevertheless, polarisation allows the tuning of the catalytic activity of the electrochemical catalysts for propene oxidation. Finally, for both kinds of electrochemical catalysts, our results have evidenced that the measurement of the open-circuit voltage during catalytic process can be an indicator of the hydrocarbon conversion.
Keywords
Platinum Yttria Stabilised Zirconia (YSZ) NASICON magnetron sputtering electrochemical catalysts NEMCA hydrocarbon combustionPreview
Unable to display preview. Download preview PDF.
References
- 1.Vayenas, C.G., Bebelis, S., Ladas, S. 1990Nature (London)343625CrossRefGoogle Scholar
- 2.C.G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda and D. Tsiplakides, in: Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion Metal-Support Interactions (Kluwer Academic/Plenum, New York, 2001)Google Scholar
- 3.Tsiakaras, P., Vayenas, C.G. 1993J. Catal.14053CrossRefGoogle Scholar
- 4.Bebelis, S., Vayenas, C.G. 1989J. Catal.118125CrossRefGoogle Scholar
- 5.Marwood, M., Vayenas, C.G. 1997J. Catal.168538CrossRefGoogle Scholar
- 6.Kaloyannis, A., Vayenas, C.G. 1997J. Catal.171148CrossRefGoogle Scholar
- 7.Vernoux, P., Gaillard, F., Bultel, L., Siebert, E., Primet, M. 2002J. Catal.208412CrossRefGoogle Scholar
- 8.Kaloyannis, A., Vayenas, C.G. 1999J. Catal.18237CrossRefGoogle Scholar
- 9.Kokkofitis, C., Karagiannakis, G., Zisekas, S., Stoukides, M. 2005J. Catal.234476CrossRefGoogle Scholar
- 10.Kotsionopoulos, N., Bebelis, S. 2005J. Appl. Electrochem.351253CrossRefGoogle Scholar
- 11.Billard, A., Vernoux, P. 2005Ionics11126CrossRefGoogle Scholar
- 12.P. Vernoux, F. Gaillard, R. Karoum and A. Billard, Appl. Catal. B. (2006) in pressGoogle Scholar
- 13.Vernoux, P., Gaillard, F., Lopez, C., Siebert, E. 2004Solid State Ionics175609CrossRefGoogle Scholar
- 14.Caneiro, A., Fabry, P., Khireddine, H., Siebert, E. 1991Anal. Chem.632251CrossRefGoogle Scholar
- 15.Billard, A., Frantz, C. 1992Mem. Et. Sci. Rev. Met.11725Google Scholar
- 16.Perry, F., Lelait, L., Pigeat, P., Billard, A., Frantz, C. 1999Le Vide: Sci. Tech. Appl.291285Google Scholar
- 17.Bultel, L., Hénault, M., Roux, C., Siebert, E., Béguin, B., Gaillard, F., Primet, M., Vernoux, P. 2002Ionics8136CrossRefGoogle Scholar
- 18.Garetto, T.F., Rincón, E., Apesteguia, C.R. 2004Appl. Catal. B48167CrossRefGoogle Scholar
- 19.Li, X., Gaillard, F., Vernoux, P. 2005Ionics11103CrossRefGoogle Scholar
- 20.X. Li, F. Gaillard and P. Vernoux, Topics in Catalysis in special issue on Recent progress on Electrochemical Promotion of Catalysis (2006) in pressGoogle Scholar
- 21.Benard, S., Retailleau, L., Gaillard, F., Vernoux, P., Giroir-Fendler, A. 2005Appl. Catal. B: Env.5511CrossRefGoogle Scholar
- 22.Petrolekas, P.D., Brosda, S., Vayenas, C.G. 1998J. Electrochem. Soc.1451469CrossRefGoogle Scholar