Topics in Catalysis

, Volume 38, Issue 1–3, pp 157–167 | Cite as

The effect of catalyst film thickness on the magnitude of the electrochemical promotion of catalytic reactions

  • C. Koutsodontis
  • A. Katsaounis
  • J. C. Figueroa
  • C. Cavalca
  • Carmo J. Pereira
  • C. G. Vayenas

The effect of catalyst film thickness on the magnitude of the effect of electrochemical promotion was investigated for the model catalytic reaction of C2H4 oxidation on porous Pt paste catalyst-electrodes deposited on YSZ. It was found that the catalytic rate enhancement ρ is up to 400 for thinner (0.2 μm) Pt films (40,000% rate enhancement) and gradually decreases to 50 for thicker (1 μm) films. The Faradaic efficiency Λ was found to increase moderately with increasing film thickness and to be described semiquantitatively by the ratio 2Fr o/I 0, where r o is the unpromoted rate and I 0 is the exchange current of the catalyst–electrolyte interface. The results are in good qualitative agreement with model predictions describing the diffusion and reaction of the backspillover O2- species, which causes electrochemical promotion.


electrochemical promotion NEMCA effect ethylene oxidation catalyst thickness effect promoter reaction-diffusion yttria-stabilzed zirconia support sacrificial promoter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Vayenas, C.G., Bebelis, S., Ladas, S 1990Nature343625CrossRefGoogle Scholar
  2. [2]
    Pritchard, J. 1990Nature343592CrossRefGoogle Scholar
  3. [3]
    Lambert, R.M., Williams, F., Palermo, A., Tikhov, M.S 2000Topics Catal1391CrossRefGoogle Scholar
  4. [4]
    Foti, G., Wodiunig, S., Comninellis, C 2001Curr. Topics Electrochem.71Google Scholar
  5. [5]
    Cavalca, C.A., Haller, G.L. 1998J. Catal.177389CrossRefGoogle Scholar
  6. [6]
    Ploense, L., Salazar, M., Gurau, B., Smotkin, E.S. 1997JACS11911550CrossRefGoogle Scholar
  7. [7]
    Vernoux, P., Gaillard, F., Bultel, L., Siebert, E., Primet, M. 2002J. Catal.208412CrossRefGoogle Scholar
  8. [8]
    I. Metcalfe, J. Catal. 199 (2001) 247; J. Catal. 199 (2001) 259Google Scholar
  9. [9]
    Douvartzides, S.L., Tsiakaras, P.E. 2002J. Catal.211521Google Scholar
  10. [10]
    Petrushina, I.M., Bandur, V.A., Cappeln, F., Bjerrum, N.J. 2000J. Electrochem. Soc.1473010CrossRefGoogle Scholar
  11. [11]
    C. Sanchez, E. Leiva, in: Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 2, eds. W. Vielstich, H. Gasteiger and A. Lamm (John Wiley & Sons Ltd., England, 2003)Google Scholar
  12. [12]
    Lu, G.Q., Wieckowski, A. 2000Curr. Opin. Col. Interf. Sci.595CrossRefGoogle Scholar
  13. [13]
    Grzybowska-Swierkosz, B., Haber, J. 1994Annual Reports on the Progress of ChemistryThe Royal Society of ChemistryCambridgeGoogle Scholar
  14. [14]
    Bockris, J.O.M., Minevski, Z.S. 1994Electrochim. Acta391471CrossRefGoogle Scholar
  15. [15]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis, S.G. Neophytides, in: Modern Aspects of Electrochemistry, Vol. 29, eds. J.O.M. Bockris, B.E. Conway and R.E. White (Kluwer Academic/Plenum Publishers, New York, 1996), p. 57Google Scholar
  16. [16]
    C.G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda and D. Tsiplakides, Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion and Metal-Support Interactions (Kluwer Academic/Plenum Publishers, New York, 2001); references thereinGoogle Scholar
  17. [17]
    Wieckowski, A.Savinova, E.Vayenas, C.G. eds. 2003Catalysis and Electrocatalysis at NanoparticlesMarcel Dekker IncNew YorkGoogle Scholar
  18. [18]
    Nicole, J., Tsiplakides, D., Pliangos, C., Verykios, X.E., Comninellis, C., Vayenas, C.G. 2001J. Catal.20423CrossRefGoogle Scholar
  19. [19]
    Vayenas, C., Archonta, D., Tsiplakides, D. 2003J. Electroanal. Chem.554–555301CrossRefGoogle Scholar
  20. [20]
    Pliangos, C., Yentekakis, I.V., Papadakis, V.G., Vayenas, C.G., Verykios, X.E. 1997Appl. Catal. B14161CrossRefGoogle Scholar
  21. [21]
    Kotsionopoulos, N., Bebelis, S. 2005J. Appl. Electrochem.351253CrossRefGoogle Scholar
  22. [22]
    Vayenas, C.G., Brosda, S., Pliangos, C. J 2001Catal.203329CrossRefGoogle Scholar
  23. [23]
    Brosda, S., Vayenas, C.G. 2002J. Catal.20838CrossRefGoogle Scholar
  24. [24]
    Balomenou, S., Tsiplakides, D., Katsaounis, A., Thiemann-Handler, S., Cramer, B., Foti, G., Comninellis , Ch., Vayenas, C.G. 2004Appl. Catal. B52181CrossRefGoogle Scholar
  25. [25]
    Baranova, E.A., Thursfield, A., Brosda, S., Fóti, G., Comninellis, Ch., Vayenas, C.G. 2005J. Electrochem. Soc.152E40CrossRefGoogle Scholar
  26. [26]
    Vayenas, C.G., Pitselis, G. 2001I&EC Res.404209Google Scholar
  27. [27]
    C. Koutsodontis, A. Katsaounis, J. Figueroa, C. Cavalca and C.G. Vayenas, in preparationGoogle Scholar
  28. [28]
    C. Koutsodontis, A. Katsaounis, J. C. Figueroa, C. Cavalca, Carmo. J. Pereira and C.G. Vayenas, Topics Catal, in press (2006)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. Koutsodontis
    • 1
  • A. Katsaounis
    • 1
  • J. C. Figueroa
    • 2
  • C. Cavalca
    • 2
  • Carmo J. Pereira
    • 2
  • C. G. Vayenas
    • 1
  1. 1.LCEP,Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.DuPont CompanyCentral Research & Development MS&EWilmingtonUSA

Personalised recommendations