Skip to main content
Log in

Comparative study on the structural, acidic and catalytic properties of nano-sized and large-particulate mesoporous aluminosilicates

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Mesostructured aluminosilicate nanoparticles with wormhole-like framework structure were synthesized via sol–gel route at low temperature using cationic cetyltrimethylammonium bromide (CTAB) as template. Similar to hexagonal AlMCM-41, the mesoporous nanoparticles had high surface area and uniform mesopores. It is more desirable that acid sites were generated directly by calcining the as-synthesized nanoparticles, making a subsequent ion-exchange and calcination treatment superfluous. The acid strength of acid sites on the present mesoporous nanoparticles was close to that on AlMCM-41 material, but less strong than that of on microporous HZSM-5 crystals. Although highly acidic HZSM-5 was active for cumene cracking, the nanoparticles and AlMCM-41 were much more catalytically active in bulky 1,3,5-triisopropylbenzene cracking due to the facilitation of diffusion of reactant/product molecules. More interestingly, the mesoporous Al substituted nanoparticles still exhibited excellent activities in 1,3,5-triisopropylbenzene transformation after severe treatment by pure steam at 800 °C for 2 h. In contrast, well-ordered AlMCM-41 totally lost its activity after the same treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Fendler (1998) Nanoparticles and Nanostructured Films WILEY-VCH Weinheim

    Google Scholar 

  2. J.C. Vartuli S.S. Shih C.T. Kresge J.S. Beck (1998) Mesopor. Mol. Sieves 117 13 Occurrence Handle1:CAS:528:DyaK1cXltl2gsr8%3D

    CAS  Google Scholar 

  3. C.E. Fowler D. Khushalani B. Lebeau S. Mann (2001) Adv. Mater. 13 649 Occurrence Handle1:CAS:528:DC%2BD3MXjslCqurs%3D Occurrence Handle10.1002/1521-4095(200105)13:9<649::AID-ADMA649>3.0.CO;2-G

    Article  CAS  Google Scholar 

  4. S. Sadasivan C.E. Fowler D. Khushalani B. Lebeau S. Mann (2002) Angew, Chem. Int. Ed. 41 2151 Occurrence Handle1:CAS:528:DC%2BD38XltVWgtLY%3D Occurrence Handle10.1002/1521-3773(20020617)41:12<2151::AID-ANIE2151>3.0.CO;2-U

    Article  CAS  Google Scholar 

  5. S. Sadasivan D. Khushalani B. Lebeau S. Mann (2003) J. Mater. Chem. 13 1023 Occurrence Handle1:CAS:528:DC%2BD3sXjtVCntLY%3D Occurrence Handle10.1039/b300851g

    Article  CAS  Google Scholar 

  6. J. Lee, J. Kim and T. Hyeon, Chem. Commun. (2003) 1138

  7. K. Suzuki K. Ikari H. Imai (2004) J. Am. Chem. Soc. 126 462 Occurrence Handle1:CAS:528:DC%2BD3sXpvFGksrw%3D Occurrence Handle10.1021/ja038250d

    Article  CAS  Google Scholar 

  8. H.P. Lin C.P. Tsai (2003) Chem. Lett. 32 1092 Occurrence Handle1:CAS:528:DC%2BD3sXpslGlt70%3D Occurrence Handle10.1246/cl.2003.1092

    Article  CAS  Google Scholar 

  9. Y. Liu T.J. Pinnavaia (2003) J. Am. Chem. Soc. 125 2376 Occurrence Handle1:CAS:528:DC%2BD3sXptV2ktA%3D%3D Occurrence Handle10.1021/ja029336u

    Article  CAS  Google Scholar 

  10. N. Yao G.X. Xiong S.S. Shen M.Y. He W.S. Yang X.H. Bao (2002) Catal. Lett. 78 37 Occurrence Handle1:CAS:528:DC%2BD38XktVGnsLk%3D Occurrence Handle10.1023/A:1014940931494

    Article  CAS  Google Scholar 

  11. W. Zhao Q.Z. Li (2003) Chem. Mater. 15 4160 Occurrence Handle1:CAS:528:DC%2BD3sXnvFWksLc%3D Occurrence Handle10.1021/cm034570k

    Article  CAS  Google Scholar 

  12. Q. Cai F.Z. Cui X.H. Chen Y.Z. Zhang S. Luo (2000) Chem. Lett. 29 1044 Occurrence Handle10.1246/cl.2000.1044

    Article  Google Scholar 

  13. Q. Luo Z.Y. Xue D.Y. Zhao (2000) Stud. Surf. Sci. Catal. 129 37 Occurrence Handle1:CAS:528:DC%2BD3cXkvFWms7Y%3D

    CAS  Google Scholar 

  14. P. Prokesova S. Mintova J. Cejka T. Bein (2003) Micropor. Mesopor. Mater. 64 165 Occurrence Handle1:CAS:528:DC%2BD3sXnsVeksro%3D Occurrence Handle10.1016/S1387-1811(03)00464-5

    Article  CAS  Google Scholar 

  15. P. Prokesova S. Mintova J. Cejka T. Bein (2003) Mater. Sci. Eng. C 23 1001 Occurrence Handle10.1016/j.msec.2003.09.151 Occurrence Handle1:CAS:528:DC%2BD3sXpvVSqtL0%3D

    Article  CAS  Google Scholar 

  16. S.R. Zhai Y. Zhang X. Shi D. Wu Y.H. Sun Y.K. Shan M.Y. He (2004) Catal. Lett. 93 225 Occurrence Handle1:CAS:528:DC%2BD2cXhsVOrtbg%3D Occurrence Handle10.1023/B:CATL.0000017080.21934.97

    Article  CAS  Google Scholar 

  17. J.M. Kim C.H. Ko C.H. Shin R. Ryoo (1995) J. Phy. Chem. 99 16742 Occurrence Handle1:CAS:528:DyaK2MXoslGhtbk%3D Occurrence Handle10.1021/j100045a039

    Article  CAS  Google Scholar 

  18. P.T. Tanev T.J. Pinnavaia (1995) Science 267 865 Occurrence Handle1:CAS:528:DyaK2MXjslCmsrk%3D Occurrence Handle10.1126/science.267.5199.865

    Article  CAS  Google Scholar 

  19. S.A. Bagshaw E. Prouzel T.J. Pinnavaia (1995) Science 269 1242 Occurrence Handle10.1126/science.269.5228.1242

    Article  Google Scholar 

  20. C.T. Kresge M.E. Leonowicz W.J. Roth J.C. Vartuli J.S. Beck (1992) Nature 359 710 Occurrence Handle1:CAS:528:DyaK38Xms1entrs%3D Occurrence Handle10.1038/359710a0

    Article  CAS  Google Scholar 

  21. C.E. Fowler D. Khushalani B. Lebeau S. Mann (2001) Adv. Mater. 13 649 Occurrence Handle1:CAS:528:DC%2BD3MXjslCqurs%3D Occurrence Handle10.1002/1521-4095(200105)13:9<649::AID-ADMA649>3.0.CO;2-G

    Article  CAS  Google Scholar 

  22. T.R. Pauly Y. Liu T.J. Pinnavaia S.J. Billinge T.P. Rieker (1999) J. Am. Chem. Soc. 12 8835 Occurrence Handle10.1021/ja991400t Occurrence Handle1:CAS:528:DyaK1MXlslChtrg%3D

    Article  CAS  Google Scholar 

  23. A. Corma A. Martinez V. Martinez-Soria J.B. Monton (1995) J. Catal. 153 25 Occurrence Handle1:CAS:528:DyaK2MXltFOru7o%3D Occurrence Handle10.1006/jcat.1995.1104

    Article  CAS  Google Scholar 

  24. H. Kosslick H. Landmesser R. Fricke W. Storek (2000) Stud. Surf. Sci. Catal. 129 243 Occurrence Handle1:CAS:528:DC%2BD3cXkvFWmtro%3D Occurrence Handle10.1016/S0167-2991(00)80220-7

    Article  CAS  Google Scholar 

  25. S. Biz M.G. White (1999) J. Phy. Chem. B 103 8432 Occurrence Handle1:CAS:528:DyaK1MXlvVGisLc%3D Occurrence Handle10.1021/jp984790z

    Article  CAS  Google Scholar 

  26. M.T. Janicke C.C. Landry S.C. Christiansen S. Birtalan G.D. Stucky B.F. Chmelka (1999) Chem. Mater. 11 1342 Occurrence Handle1:CAS:528:DyaK1MXisFGlsLc%3D Occurrence Handle10.1021/cm981135v

    Article  CAS  Google Scholar 

  27. J. Aguado K.P. Serrano J.M. Escola (2000) Micropor. Mesopor. Mater. 34 43 Occurrence Handle1:CAS:528:DC%2BD3cXks1Ojtw%3D%3D Occurrence Handle10.1016/S1387-1811(99)00154-7

    Article  CAS  Google Scholar 

  28. L. Zhu F. Xiao Z. Zhang Y. Sun Y. Han S. Qiu (2001) Catal. Today 68 209 Occurrence Handle1:CAS:528:DC%2BD3MXlslCitr4%3D Occurrence Handle10.1016/S0920-5861(01)00302-9

    Article  CAS  Google Scholar 

  29. M. Niwa N. Katada M. Sawa Y. Murakami (1995) J. Phys. Chem. 99 8812 Occurrence Handle1:CAS:528:DyaK2MXls1yruro%3D Occurrence Handle10.1021/j100021a056

    Article  CAS  Google Scholar 

  30. A. Gedeon A. Lassoued J.L. Bonardet J. Fraissard (2001) Micropor. Mesopor. Mater. 44–45 801 Occurrence Handle10.1016/S1387-1811(01)00263-3

    Article  Google Scholar 

  31. H. Koch W. Reschetilowski (1998) Micropor. Mesopor. Mater. 25 127 Occurrence Handle1:CAS:528:DyaK1cXnvVarurw%3D Occurrence Handle10.1016/S1387-1811(98)00184-X

    Article  CAS  Google Scholar 

  32. A. Corma (1997) Chem. Rev. 97 2373 Occurrence Handle1:CAS:528:DyaK2sXlvVyhtb8%3D Occurrence Handle10.1021/cr960406n

    Article  CAS  Google Scholar 

  33. R. Mokaya (1999) J. Catal. 186 470 Occurrence Handle1:CAS:528:DyaK1MXlvFahtLs%3D Occurrence Handle10.1006/jcat.1999.2590

    Article  CAS  Google Scholar 

  34. Y. T.J. Liu Pinnavaia (2004) J. Mater. Chem. 14 1099 Occurrence Handle10.1039/b315193j Occurrence Handle1:CAS:528:DC%2BD2cXisVektLY%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangru Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, S., Zhang, Y., Wu, D. et al. Comparative study on the structural, acidic and catalytic properties of nano-sized and large-particulate mesoporous aluminosilicates. Top Catal 39, 227–235 (2006). https://doi.org/10.1007/s11244-006-0061-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0061-2

Keywords

Navigation