Skip to main content
Log in

New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst

  • Research Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Selective oxidation is of key importance in the synthesis of chemical intermediates. For many years a number of oxides and supported metal catalysts have been used. The key questions involved in the design of selective oxidation catalysts are discussed in the initial part of this paper. One of the most exciting recent developments in the field of selective oxidation has been the discovery that supported gold catalysts are active. The second part of the paper discusses Au/C catalysts, which are shown to be particularly versatile for oxidation reactions. Four examples of selective oxidation are described using molecular oxygen as oxidant: (a) selective oxidation of glycerol to glycerate in the presence of base; (b) the oxidation of cyclohexane to cyclohexanol and cyclohexanane in the presence of a radical initiator; (c) the oxidation of hydrogen to hydrogen peroxide, and (d) the oxidation of benzyl alcohol to benzaldehyde under solvent free conditions. In contrast, the Au/C catalysts are not active for oxidation of carbon monoxide at ambient temperature. These examples demonstrate that there exists a rich potential for Au/C as a selective oxidation catalyst and that research efforts should now be focussed on selective oxidation using supported gold catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Hutchings M.S. Scurrell (2003) Cattech 7 90 Occurrence Handle1:CAS:528:DC%2BD3sXjvVaguro%3D Occurrence Handle10.1023/A:1023801108121

    Article  CAS  Google Scholar 

  2. J. Scheidtmann P.A. Weiβ W.F. Maier (2001) Appl. Catal. A 222 79 Occurrence Handle1:CAS:528:DC%2BD38XjvFSg Occurrence Handle10.1016/S0926-860X(01)00831-6

    Article  CAS  Google Scholar 

  3. D. Wolf O.V. Buyevskaya M. Baerns (2000) Appl. Catal. A 200 63 Occurrence Handle1:CAS:528:DC%2BD3cXls1Cktbg%3D Occurrence Handle10.1016/S0926-860X(00)00643-8

    Article  CAS  Google Scholar 

  4. J.S.J. Hargreaves G.J. Hutchings R.W. Joyner (1990) Nature (London) 348 428 Occurrence Handle1:CAS:528:DyaK3MXksFChtQ%3D%3D Occurrence Handle10.1038/348428a0

    Article  CAS  Google Scholar 

  5. G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse, J. Chem. Soc. Chem. Commun. (1988) 253.

  6. R.A. Sheldon M. Wallau I.C.E. Arenda U. Schuchardt (1998) Chem. Res. 175 62

    Google Scholar 

  7. M Haruta (2004) Gold Bull. 37 27 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsL8%3D

    CAS  Google Scholar 

  8. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett. (1987) 405.

  9. G.J. Hutchings (1985) J. Catal. 96 292 Occurrence Handle1:CAS:528:DyaL28Xoslyqtw%3D%3D Occurrence Handle10.1016/0021-9517(85)90383-5

    Article  CAS  Google Scholar 

  10. B. Nkosi N.J. Coville G.J. Hutchings M.D. Adams J. Friedl F. Wagner (1991) J. Catal. 128 366 Occurrence Handle1:CAS:528:DyaK3MXhsVCjtLw%3D Occurrence Handle10.1016/0021-9517(91)90295-F

    Article  CAS  Google Scholar 

  11. A.S.K. Hashmi (2004) Gold Bull. 37 51 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLo%3D

    CAS  Google Scholar 

  12. G.C. Bond D.T. Thompson (1999) Catal. Rev.-Sci. Eng. 41 319 Occurrence Handle1:CAS:528:DyaK1MXmvFehsLk%3D Occurrence Handle10.1081/CR-100101171

    Article  CAS  Google Scholar 

  13. G.C. Bond D.T. Thompson (2000) Gold Bull. 33 41 Occurrence Handle1:CAS:528:DC%2BD3MXmsFKgsw%3D%3D

    CAS  Google Scholar 

  14. T. Hayashi K. Tanaka M. Haruta (1998) J. Catal. 178 566 Occurrence Handle1:CAS:528:DyaK1cXmtlChsLk%3D Occurrence Handle10.1006/jcat.1998.2157

    Article  CAS  Google Scholar 

  15. T.A. Nijhuis B.J. Huizinga M. Makkee J.A. Moulijn (1999) Ind. Eng. Chem. Res. 38 884 Occurrence Handle1:CAS:528:DyaK1MXnsF2rsw%3D%3D Occurrence Handle10.1021/ie980494x

    Article  CAS  Google Scholar 

  16. L. Prati M. Rossi (1998) J. Catal. 176 552 Occurrence Handle1:CAS:528:DyaK1cXjvFemsr0%3D Occurrence Handle10.1006/jcat.1998.2078

    Article  CAS  Google Scholar 

  17. F. Porta L. Prati M. Rossi S. Colluccia G. Martra (2000) Catal. Today 61 165 Occurrence Handle1:CAS:528:DC%2BD3cXmtF2nu74%3D Occurrence Handle10.1016/S0920-5861(00)00370-9

    Article  CAS  Google Scholar 

  18. C. Bianchi F. Porta L. Prati M. Rossi (2000) Top. Catal. 13 231 Occurrence Handle1:CAS:528:DC%2BD3cXns1ejsrk%3D Occurrence Handle10.1023/A:1009065812889

    Article  CAS  Google Scholar 

  19. L. Prati (1999) Gold Bull. 32 96 Occurrence Handle1:CAS:528:DC%2BD3cXnt1ejsw%3D%3D

    CAS  Google Scholar 

  20. S. Biella and M. Rossi, Chem. Comm. (2003) 378.

  21. S. Carrettin, P. McMorn, P. Johnston, K. Griffin and G.J. Hutchings, Chem. Commun. (2002) 696.

  22. S. Carretin P. McMorn P. Johnston K. Griffin C.J. Kiely G.J. Hutchings (2003) Phys. Chem. Chem. Phys. 5 1329 Occurrence Handle10.1039/b212047j

    Article  Google Scholar 

  23. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely and G.J. Hutchings, Chem. Commun. (2002) 2058.

  24. P. Landon P.J. Collier A.F. Carley D. Chadwick A.J. Papworth A. Burrows C.J. Kiely G.J. Hutchings (2003) Phys. Chem. Chem. Phys. 5 1917 Occurrence Handle1:CAS:528:DC%2BD3sXivFGksr4%3D Occurrence Handle10.1039/b211338b

    Article  CAS  Google Scholar 

  25. M. Dugal G. Sankar R. Raja J.M. Thomas (2000) Angew. Chem. Int. Ed. 39 2310 Occurrence Handle1:CAS:528:DC%2BD3cXltlGku7w%3D Occurrence Handle10.1002/1521-3773(20000703)39:13<2310::AID-ANIE2310>3.0.CO;2-G

    Article  CAS  Google Scholar 

  26. J.M. Thomas R. Raja G. Sankar R.G. Bell (1999) Nature 398 227 Occurrence Handle1:CAS:528:DyaK1MXitVGlur8%3D Occurrence Handle10.1038/18417

    Article  CAS  Google Scholar 

  27. R. Raja G. Sankar J.M. Thomas (1999) J. Am. Chem. Soc. 121 11926 Occurrence Handle1:CAS:528:DyaK1MXnslWitLY%3D Occurrence Handle10.1021/ja9935052

    Article  CAS  Google Scholar 

  28. R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X. Wang and J. Suo, Chem. Commun. (2004) 904.

  29. G. Lü R. Zhao Qian Guang Y. Qi X. Wang J. Suo (2004) Catal. Lett. 97 115 Occurrence Handle10.1023/B:CATL.0000038571.97121.b7

    Article  Google Scholar 

  30. Y.-J. Xu, P. Landon, D. Enache, A.F. Carley, and G.J. Hutchings, Catal. Lett. 101 (2005) 175.

    Google Scholar 

  31. K. Mori T. Hara T. Mizugaki K. Ebitani K. Kaneda (2004) J. Am. Chem. Soc. 126 10657 Occurrence Handle1:CAS:528:DC%2BD2cXmtlCgs78%3D Occurrence Handle10.1021/ja0488683

    Article  CAS  Google Scholar 

  32. A. Abad, P. Concepcion, A. Corma and H. Garcia, Angew. Chem. Int. Ed. 44 (2005) 4066.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchings, G.J., Carrettin, S., Landon, P. et al. New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst. Top Catal 38, 223–230 (2006). https://doi.org/10.1007/s11244-006-0020-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0020-y

Keywords

Navigation