Skip to main content
Log in

Catalytic Activity of Exfoliated MoS2 in Hydrodesulfurization, Hydrodenitrogenation and Hydrogenation Reactions

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

The activity of exfoliated MoS2 in the hydrodesulfurization (HDS) of dibenzothiophene, the hydrodenitrogenation (HDN) of carbazole and the hydrogenation of naphthalene has been determined. The catalytic activity was compared to MoS2 prepared by the decomposition of molybdenum naphthenate (MoNaph). Exfoliated MoS2 was found to give better overall HDS activity compared to MoNaph derived MoS2 catalyst, whereas MoNaph derived MoS2 was found to give higher hydrogenation and HDN activity. These results are discussed in terms of the morphology of the two catalysts. The relative activity of the two catalysts in the hydrotreating reactions is shown to be different to that obtained during Cold Lake bitumen hydrocracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Daage R.R. Chianelli (1994) J. Catal. 149 414 Occurrence Handle1:CAS:528:DyaK2cXmsF2gsrg%3D Occurrence Handle10.1006/jcat.1994.1308

    Article  CAS  Google Scholar 

  2. Y. Iwata K. Sato T. Yoneda Y. Miki Y. Sugimoto A. Nishijima H. Shimada (1998) Catal. Today 45 353 Occurrence Handle1:CAS:528:DyaK1cXntVGju70%3D Occurrence Handle10.1016/S0920-5861(98)00262-4

    Article  CAS  Google Scholar 

  3. Y. Iwata Y. Araki K. Honna Y. Miki K. Sato H. Shimada (2001) Catal. Today 65 335 Occurrence Handle1:CAS:528:DC%2BD3MXhvFCisrw%3D Occurrence Handle10.1016/S0920-5861(00)00554-X

    Article  CAS  Google Scholar 

  4. H. Farag K. Sakanishi M. Kouzu A. Matsumura Y. Sugimoto I. Salto (2003) J. Mol. Catal. A 206 399 Occurrence Handle1:CAS:528:DC%2BD3sXntVyitrw%3D Occurrence Handle10.1016/S1381-1169(03)00445-X

    Article  CAS  Google Scholar 

  5. H. Farag K. Sakanishi M. Kouzu A. Matsumura Y. Sugimoto I. Saito (2003) Ind. Eng. Chem. Res. 42 306 Occurrence Handle1:CAS:528:DC%2BD38XpsFWmtbc%3D Occurrence Handle10.1021/ie020404v

    Article  CAS  Google Scholar 

  6. M. Valle ParticleDel J. Cruz-Reyes M. Avalos-Borja S. Fuentes (1998) Catal. Lett. 54 59 Occurrence Handle10.1023/A:1019023821064

    Article  Google Scholar 

  7. E. Devers P. Afanasiev B. Jouguet M. Vrinat (2002) Catal. Lett. 82 13 Occurrence Handle1:CAS:528:DC%2BD38Xns1Cmt7o%3D Occurrence Handle10.1023/A:1020512320773

    Article  CAS  Google Scholar 

  8. A. Bianco ParticleDel N. Panariti M. Marchionna (1995) Chemtech 25 35

    Google Scholar 

  9. A. Bianco ParticleDel N. Panariti S. Dicarlo J. Elmouchnino B. Fixari P. Leperchec (1993) Appl. Catal. A 94 1 Occurrence Handle10.1016/0926-860X(93)80041-N

    Article  Google Scholar 

  10. R. Lott, L.K. Lee, Proceedings of AIChE Spring National Meeting (AIChE, New Orleans, Louisiana, April 2003) 577

  11. L. Kane S. Romanow (2003) Hydrocarb Process 82 32

    Google Scholar 

  12. N. Panariti A. Bianco ParticleDel G. Piero ParticleDel M. Marchionna (2000) Appl. Catal. A 204 203 Occurrence Handle1:CAS:528:DC%2BD3cXntFyisr8%3D Occurrence Handle10.1016/S0926-860X(00)00531-7

    Article  CAS  Google Scholar 

  13. E.J.M. Hensen P.J. Kooyman Y. Meer Particlevan der A.M. Kraan Particlevan der V.H.J. Beer Particlede J.A.R. Veen Particlevan R.A. Santen Particlevan (2001) J. Catal. 199 224 Occurrence Handle1:CAS:528:DC%2BD3MXis1Sjurw%3D Occurrence Handle10.1006/jcat.2000.3158

    Article  CAS  Google Scholar 

  14. H. Schweiger P. Raybaud G. Kresse H. Toulhoat (2002) J. Catal. 207 76 Occurrence Handle1:CAS:528:DC%2BD38Xit1yjt78%3D Occurrence Handle10.1006/jcat.2002.3508

    Article  CAS  Google Scholar 

  15. H. Topsoe B.S. Clausen (1984) Catal. Rev. -Sci. Eng. 26 395

    Google Scholar 

  16. C.T. Tye K.J. Smith (2004) Catal. Lett. 95 203 Occurrence Handle1:CAS:528:DC%2BD2cXkslyltrs%3D Occurrence Handle10.1023/B:CATL.0000027295.76634.ac

    Article  CAS  Google Scholar 

  17. P. Joensen R.F. Frindt S.R. Morrison (1986) Mater. Res. Bull. 21 457 Occurrence Handle1:CAS:528:DyaL28XktFOjsLk%3D Occurrence Handle10.1016/0025-5408(86)90011-5

    Article  CAS  Google Scholar 

  18. M. Valle ParticleDel M. Avalos-Borja J. Cruz S. Fuentes (1994) Mater. Res. Soc. Symp. Proc. 351 287 Occurrence Handle1:CAS:528:DyaK2MXpt1WhtA%3D%3D

    CAS  Google Scholar 

  19. W.P. Boone J.G. Ekerdt (2000) J. Catal. 193 96 Occurrence Handle1:CAS:528:DC%2BD3cXktVKju70%3D Occurrence Handle10.1006/jcat.2000.2884

    Article  CAS  Google Scholar 

  20. D.I. Kochubei V.A. Rogov V.P. Babenko S.V. Bogdanov V.I. Zaikovskii (2003) Kinetics Catal. 44 135 Occurrence Handle1:CAS:528:DC%2BD3sXhsVKgs70%3D Occurrence Handle10.1023/A:1022589105585

    Article  CAS  Google Scholar 

  21. B.C. Bockrath D.S. Parfitt (1995) Coal Sci. Tech. 24 1343 Occurrence Handle1:CAS:528:DyaK28XnsVahsA%3D%3D Occurrence Handle10.1016/S0167-9449(06)80052-2

    Article  CAS  Google Scholar 

  22. B.C. Bockrath D.S. Parfitt (1995) Catal. Lett. 33 201 Occurrence Handle1:CAS:528:DyaK2MXmvVCqu7s%3D Occurrence Handle10.1007/BF00817059

    Article  CAS  Google Scholar 

  23. C.T. Tye, PhD thesis, University of British Columbia, (2006)

  24. C.T. Tye and K.J. Smith, Catal. Today (Accepted)

  25. M. Nagai T. Masunaga N. Hanaoka (1988) Energy Fuels 2 645 Occurrence Handle1:CAS:528:DyaL1cXkvFGksro%3D Occurrence Handle10.1021/ef00011a007

    Article  CAS  Google Scholar 

  26. E. Furimsky (2005) Catal. Rev. -Sci. Eng. 47 297 Occurrence Handle1:CAS:528:DC%2BD2MXlvFSrt7o%3D

    CAS  Google Scholar 

  27. A. Szymanska M. Lewandowski C. Sayag G. Djega-Mariadassou (2003) J. Catal. 218 24 Occurrence Handle1:CAS:528:DC%2BD3sXkvVaqsb4%3D Occurrence Handle10.1016/S0021-9517(03)00072-1

    Article  CAS  Google Scholar 

  28. F.E. Massoth S.C. Kim (2003) Ind. Eng. Chem. Res. 42 1011 Occurrence Handle1:CAS:528:DC%2BD3sXmt12juw%3D%3D Occurrence Handle10.1021/ie020390t

    Article  CAS  Google Scholar 

  29. M. Nagai Y. Goto A. Irisawa S. Omi (2000) J. Catal. 191 128 Occurrence Handle1:CAS:528:DC%2BD3cXhvVyjsL0%3D Occurrence Handle10.1006/jcat.1999.2788

    Article  CAS  Google Scholar 

  30. H.G. Kim C.W. Curtis (1990) Energy Fuels 4 206 Occurrence Handle1:CAS:528:DyaK3cXht1Wqurk%3D Occurrence Handle10.1021/ef00020a014

    Article  CAS  Google Scholar 

  31. S. Kasztelan H. Toulhoat J. Grimblot J.P. Bonnelle (1984) Appl. Catal. 13 127 Occurrence Handle1:CAS:528:DyaL2MXotFensQ%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tye, C.T., Smith, K.J. Catalytic Activity of Exfoliated MoS2 in Hydrodesulfurization, Hydrodenitrogenation and Hydrogenation Reactions. Top Catal 37, 129–135 (2006). https://doi.org/10.1007/s11244-006-0014-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0014-9

Keywords

Navigation