Skip to main content
Log in

Self-neutralizing in situ Acid Catalysts from CO2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Acids are the most common industrial catalysts but have the disadvantage of requiring post-reaction neutralization and salt disposal. We show the catalytic use of self-neutralizing acids. Carbon dioxide interacts with water and amines to form carbonic acid and carbamates. A similar interaction occurs with alcohols to form alkylcarbonic acids. All three solvent systems provide in situ acid formation for catalysis which can be easily neutralized by removal of carbon dioxide. However, water has poor organic solubility and amines form salts so only alkylcarbonic acids combine good organic solubility with simple neutralization via depressurization. The use of in situ acid also completely eliminates the solid salt wastes associated with many acid processes. To elucidate how to implement these systems in place of a standard acid system we compare the reaction rates of several alkylcarbonic acids with diazodiphenylmethane (DDM). We report also the effect of CO2 pressure on reaction rate of DDM as well as measure the dielectric constant of these systems. Finally, a Hammett plot is used to identify the dominant step in alkylcarbonic acid catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eissen J.O. Metzger (2002) Chem. Eur. J. 8 3580 Occurrence Handle1:CAS:528:DC%2BD38Xmslequr0%3D Occurrence Handle10.1002/1521-3765(20020816)8:16<3580::AID-CHEM3580>3.0.CO;2-J

    Article  CAS  Google Scholar 

  2. C.A. Eckert D. Bush J.S. Brown C.L. Liotta (2000) Ind. Eng. Chem. Res. 39 4615 Occurrence Handle1:CAS:528:DC%2BD3cXosVehtLo%3D Occurrence Handle10.1021/ie000396n

    Article  CAS  Google Scholar 

  3. C.A. Eckert K. Chandler (1998) J. Supercritical Fluids 13 187 Occurrence Handle1:CAS:528:DyaK1cXltFKitLg%3D Occurrence Handle10.1016/S0896-8446(98)00051-5

    Article  CAS  Google Scholar 

  4. C.A. Eckert B.L. Knutson P.G. Debenedietti (1996) Nature 383 313 Occurrence Handle1:CAS:528:DyaK28XlvFaisbw%3D Occurrence Handle10.1038/383313a0

    Article  CAS  Google Scholar 

  5. M. Wei G.T. Musie D.H. Busch B. Subramaniam (2001) J. Am. Chem. Soc. 124 2513 Occurrence Handle10.1021/ja0114411

    Article  Google Scholar 

  6. G.T. Musie M. Wei D.H. Busch B. Subramaniam (2001) Coor. Chem. Rev. 219–221 789 Occurrence Handle10.1016/S0010-8545(01)00367-8

    Article  Google Scholar 

  7. L.A. Blanchard J.F. Brennecke (2001) Green Chem. 3 17 Occurrence Handle1:CAS:528:DC%2BD3MXps1Slug%3D%3D Occurrence Handle10.1039/b007734h

    Article  CAS  Google Scholar 

  8. C.J. Chang A.D. Randolph (1990) AICHE J. 36 939 Occurrence Handle1:CAS:528:DyaK3cXks1aitr4%3D Occurrence Handle10.1002/aic.690360615

    Article  CAS  Google Scholar 

  9. C. Lin G. Muhrer M. Mazzotti B. Subramaniam (2003) Ind. Eng. Chem. Res. 42 2171 Occurrence Handle1:CAS:528:DC%2BD3sXivFGntLw%3D Occurrence Handle10.1021/ie020784k

    Article  CAS  Google Scholar 

  10. X. Xie, J.S. Brown, P.J. Joseph, C.L. Liotta and C.A. Eckert, Chem. Commun. (2002) 1156.

  11. J. Zhao S.V. Olesik (2001) Anal. Chim. Acta 449 221 Occurrence Handle1:CAS:528:DC%2BD3MXoslKgs7Y%3D Occurrence Handle10.1016/S0003-2670(01)01337-X

    Article  CAS  Google Scholar 

  12. K.N. West C. Wheeler J.P. McCarney K.N. Griffith D. Bush C.L. Liotta C.A. Eckert (2001) J. Phys. Chem. A 105 3947 Occurrence Handle1:CAS:528:DC%2BD3MXit12htL8%3D

    CAS  Google Scholar 

  13. X. Xie C.L. Liotta C.A. Eckert (2004) Ind. Eng. Chem. Res. 43 2605 Occurrence Handle1:CAS:528:DC%2BD2cXjsVChsL8%3D Occurrence Handle10.1021/ie034103c

    Article  CAS  Google Scholar 

  14. T.S. Chamblee R.R. Weikel S.A. Nolen C.L. Liotta C.A. Eckert (2004) Green Chem. 6 382 Occurrence Handle1:CAS:528:DC%2BD2cXnsVyjtb0%3D Occurrence Handle10.1039/b400393d

    Article  CAS  Google Scholar 

  15. R.R. Weikel, C.L. Liotta and C.A. Eckert, Green Chem. (submitted).

  16. C. Hulme L. Ma J.J. Romano G. Morton S.-Y. Tang M.-P. Cherrier S. Choi J. Salvino R. Labaudiniere (2000) Tetrahedron Lett. 41 1889 Occurrence Handle1:CAS:528:DC%2BD3cXit1Krt7w%3D Occurrence Handle10.1016/S0040-4039(00)00053-8

    Article  CAS  Google Scholar 

  17. T.A. Keating R.W. Armstrong (1998) J. Org. Chem. 63 867 Occurrence Handle1:CAS:528:DyaK1cXkvVWrsw%3D%3D Occurrence Handle10.1021/jo971463z

    Article  CAS  Google Scholar 

  18. A. Buckley N.B. Chapman M.R.J. Dack J. Shorter H.M. Wall (1968) J. Chem. Soc. B 2 631 Occurrence Handle10.1039/j29680000631

    Article  Google Scholar 

  19. R.A. Dombro M.A. McHugh G.A. Prentice C.R. Westgate (1991) Fluid Phase Equilib. 61 227 Occurrence Handle1:CAS:528:DyaK3MXhsFGisrc%3D Occurrence Handle10.1016/0378-3812(91)80001-C

    Article  CAS  Google Scholar 

  20. V. Roskar R.A. Dombro G.A. Prentice C.R. Westgate M.A. McHugh (1992) Fluid Phase Equilib. 77 241 Occurrence Handle1:CAS:528:DyaK3sXntFClsQ%3D%3D Occurrence Handle10.1016/0378-3812(92)85106-I

    Article  CAS  Google Scholar 

  21. D.L. Golfarb D.P. Fernandez H.R. Corti (1999) Fluid Phase Equilib. 158–160 1011 Occurrence Handle10.1016/S0378-3812(99)00146-6

    Article  Google Scholar 

  22. S.B. Lee R.L. Smith H. Inomata K. Arai (2000) Rev. Sci. Instruments 71 4226 Occurrence Handle1:CAS:528:DC%2BD3cXnslygsLk%3D Occurrence Handle10.1063/1.1321303

    Article  CAS  Google Scholar 

  23. L.I. Smith K.L. Howard (1955) Org. Synth. Collection 3 351

    Google Scholar 

  24. C.J. Chang K.-L. Chiu D. Chang-Yih (1998) J. Supercritical Fluids 12 223 Occurrence Handle10.1016/S0896-8446(98)00076-X

    Article  Google Scholar 

  25. F.A. Carroll (1998) Perspectives on Structure and Mechanism in Organic Chemistry Brooks/Cole Publishing Company Pacific Grove, CA 384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weikel, R.R., Hallett, J.P., Liotta, C.L. et al. Self-neutralizing in situ Acid Catalysts from CO2. Top Catal 37, 75–80 (2006). https://doi.org/10.1007/s11244-006-0007-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0007-8

Keywords

Navigation