Topics in Catalysis

, Volume 35, Issue 3–4, pp 327–330 | Cite as

Effect of γ-ray Irradiation on the Wettability of TiO2 Single Crystals

  • Satoru Dohshi
  • Masakazu Anpo
  • Shuichi Okuda
  • Takao Kojima

The contact angles of the water droplets on TiO2 single crystal surfaces decreased and became superhydrophilic state by γ-ray irradiation. It was found that these behaviors were dependent on γ-ray irradiation atmosphere, i.e., in air and in N2 atmosphere (r. h.; 30%) as well as crystal faces of TiO2 single crystals, i.e., TiO2 (100) and (110) surfaces. It was also found from the results of UV–Vis and ESR measurements that γ-ray irradiation under N2 atmosphere led to the oxygen vacancies and associated Ti3+, regardless of the presence of gaseous water. Moreover, it was suggested that the organic molecules adsorbed on TiO2 single crystal surfaces decomposed by γ-ray irradiation.


TiO2 single Crystals hydrophilicity of TiO2 surfaces Contact angle v-irradiation water droplet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ollis, F.D., Al-Ekabi, H. 1993Photocatalytic Purifications and Treatment of Water and AirElsevierAmsterdamGoogle Scholar
  2. 2.
    Fujishima, A., Hashimoto, K., Kubota, Y. 1995Hyomen Kagaku16188Google Scholar
  3. 3.
    Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, R., Kitamura, A., Shimohigoshi, M., Watanabe, T. 1997Nature388431CrossRefGoogle Scholar
  4. 4.
    Sakai, N., Wang, R., Fujishima, A., Watanabe, T., Hashimoto, K. 1998Langmuir145918CrossRefGoogle Scholar
  5. 5.
    Wang, R., Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K. 1999J. Phys. Chem. B1032188CrossRefGoogle Scholar
  6. 6.
    Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K. 2001J. Phys. Chem. B1053023CrossRefGoogle Scholar
  7. 7.
    Miyauchi, M., Nakajima, A., Hashimoto, K., Watanabe, T. 2000Adv. Mater.121923CrossRefGoogle Scholar
  8. 8.
    Hattori, A., Kawahara, T., Uemoto, T., Suzuki, F., Tada, H., Ito, S. 2000J. Colloid Interface Sci.232410CrossRefPubMedGoogle Scholar
  9. 9.
    Tada, H., Kubo, Y., Akazawa, M., Ito, S. 1998Langmuir142936CrossRefGoogle Scholar
  10. 10.
    Miyashita, K., Kuroda, S., Ubukata, T., Ozawa, T., Kubota, H. 2001J. Mater Sci.363877CrossRefGoogle Scholar
  11. 11.
    Lee, H.Y., Park, Y.H., Ko, K.H. 2000Langmuir167289CrossRefGoogle Scholar
  12. 12.
    Miyauchi, M., Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T. 2000Chem. Mater.123CrossRefGoogle Scholar
  13. 13.
    Nakamura, M., Sirghi, L., Aoki, T., Hatanaka, Y. 2002Surf Sci.507778Google Scholar
  14. 14.
    Dohshi, S., Takeuchi, M., Anpo, M. 2001J. Nanosci. Nanotech.1337CrossRefGoogle Scholar
  15. 15.
    Dohshi, S., Takeuchi, M., Anpo, M. 2003Catal. Today85199CrossRefGoogle Scholar
  16. 16.
    Takeuchi, M., Dohshi, S., Eura, T., Anpo, M. 2003J. Phys. Chem. B10714278CrossRefGoogle Scholar
  17. 17.
    White, J.M., Szanyi, J., Henderson, M.A. 2003J. Phys. Chem. B.1079029CrossRefGoogle Scholar
  18. 18.
    Linsebigler, A.L., Lu, G., Yates, J.T. 1995Chem. Rev.95735CrossRefGoogle Scholar
  19. 19.
    Panayotov, D., Yates, J.T. 2004J. Phys. Chem. B1082998CrossRefGoogle Scholar
  20. 20.
    Zacheis, G.A., Gray, K.A., Kamat, P.V. 2001J. Phys. Chem. B1054715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Satoru Dohshi
    • 1
  • Masakazu Anpo
    • 1
  • Shuichi Okuda
    • 2
  • Takao Kojima
    • 2
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan
  2. 2.Research Center for Radiation and Radioisotopes, Research Institute for Advanced Science and TechnologyOsaka Prefecture UniversityOsakaJapan

Personalised recommendations