Skip to main content
Log in

En route to complete design of heterogeneous catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Achieving complete control in the synthesis of the active center of a heterogeneous catalyst, which includes the active site, environment around the active site, and the access path is highly desirable but not attainable yet. However, there has been significant progress in recent years that permits a level of control of these properties that are unachievable before. Some illustrative examples are described to demonstrate this in the synthesis of active sites in metal and oxide catalysts and their surroundings. For the active site synthesis, examples include using polynuclear metal complexes as precursors, cluster beam deposition, and use of dendrimers to generate metallic active sites, protection of coordination unsaturation in the synthesis of oxide active sites, and employing silsesquioxane, and unit-by-unit approach. Exfoliation, use of inverse micelles, molecular and macromolecular templating as techniques to exert control of the environment of the active center are also discussed. The limitations of these synthetic methods and remaining challenges are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noyori T. Ohkuma M. Kitamura (1987) J. Am. Chem. Soc 109 5856 Occurrence Handle10.1021/ja00253a051 Occurrence Handle1:CAS:528:DyaL2sXlslGntL8%3D

    Article  CAS  Google Scholar 

  2. C. Gates (2000) J. Mol. Catal. A., Chem 163 55

    Google Scholar 

  3. J.M. Thomas B.F.G. Johnson R. Raja G. Sankar P.A. Midgley (2003) Accts Chem. Res 36 20 Occurrence Handle10.1021/ar990017q Occurrence Handle1:CAS:528:DC%2BD38Xnslamtr4%3D

    Article  CAS  Google Scholar 

  4. U. Heiz A. Sanchez S. Abbet W.-D. Schneider (2000) Chem. Phys 262 189 Occurrence Handle10.1016/S0301-0104(00)00268-8 Occurrence Handle1:CAS:528:DC%2BD3cXosVWmurs%3D

    Article  CAS  Google Scholar 

  5. R.M. Crooks M. Zhao L. Sun V. Chechik L.K. Yeung (2001) Acc. Chem. Res 34 181 Occurrence Handle10.1021/ar000110a Occurrence Handle1:CAS:528:DC%2BD3cXovVOjsb8%3D Occurrence Handle11263876

    Article  CAS  PubMed  Google Scholar 

  6. M. Zhao R.M. Crooks (1999) Chem. Mater 11 3379 Occurrence Handle10.1021/cm990435p Occurrence Handle1:CAS:528:DyaK1MXmsVentr0%3D

    Article  CAS  Google Scholar 

  7. H. Lang R.A. May B.L. Iverson B.D. Chandler (2003) J. Am. Chem. Soc 125 14832 Occurrence Handle10.1021/ja0364120 Occurrence Handle1:CAS:528:DC%2BD3sXovVSiu70%3D Occurrence Handle14640659

    Article  CAS  PubMed  Google Scholar 

  8. R.W.J. Scott A.K. Datye R.M. Crooks (2003) J. Am. Chem. Soc 125 3709

    Google Scholar 

  9. B. Corain K. Jerabek P. Centomo P. Canton (2004) Angew. Chem. Int. Ed 43 IssueID8 959 Occurrence Handle10.1002/anie.200352640 Occurrence Handle1:CAS:528:DC%2BD2cXhslGmu74%3D

    Article  CAS  Google Scholar 

  10. R.W.J.M. Hanssen R.A. Santen Particlevan H.C.L. Abbenhius (2004) Eur. J. Inorg. Chem 2004 IssueID4 675 Occurrence Handle10.1002/ejic.200300412

    Article  Google Scholar 

  11. H.C.L. Abbenhuis (2000) Chem. Eur. J 6 25 Occurrence Handle10.1002/(SICI)1521-3765(20000103)6:1<25::AID-CHEM25>3.3.CO;2-P Occurrence Handle1:CAS:528:DC%2BD3cXktFGitw%3D%3D

    Article  CAS  Google Scholar 

  12. Feher F.J., Newman D.A., Walzer J.F. J. Am. Chem. Soc. 111(1989) 1741; Crocker M., R.H.M. Herold, Orpen A.G., Chem. Commun. (1997), 2411.

  13. Crocker M., R.H.M. Herold and Orpen A.G., Chem. Commun. (1997) 2411.

  14. Maschmeyer T., M.C. Klunduk , Martin C.M., D.S. Shephard , J.M. Thomas and B.Johnson F.G., Chem. Commun. (19) (1997) 1847.

  15. M.C. Klunduk T. Mashmeyer J.M. Thomas B.F.G. Johnson (1999) Chem. Eur. J 5 1481 Occurrence Handle10.1002/(SICI)1521-3765(19990503)5:5<1481::AID-CHEM1481>3.3.CO;2-# Occurrence Handle1:CAS:528:DyaK1MXjt1Wjtr0%3D

    Article  CAS  Google Scholar 

  16. Wada K., Nakashita M., Yamamoto A., Mitsudo T. Chem Commun. (1998) 133.

  17. F.J. Feher and Blansk R.L., J. Chem. Soc. Che. Commun. (1990) 1614.

  18. F.J. Feher T.A. Budzichowski (1995) Polyhderon 14 3239 Occurrence Handle10.1016/0277-5387(95)85009-0 Occurrence Handle1:CAS:528:DyaK2MXosVWgt7c%3D

    Article  CAS  Google Scholar 

  19. Chang Z., M.C. Kung and Kung H.H., Chem. Comm. (2004) 206.

  20. A. Kozlov M.C. Kung W.M. Xue H.H. Kung (2003) Angew. Chem. Int. Ed 42 2415 Occurrence Handle10.1002/anie.200250581 Occurrence Handle1:CAS:528:DC%2BD3sXkslekurg%3D

    Article  CAS  Google Scholar 

  21. W.M. Xue M.C. Kung A.I. Kozlov K.E. Popp H.H. Kung (2003) Catal. Today 85 219 Occurrence Handle10.1016/S0920-5861(03)00389-4 Occurrence Handle1:CAS:528:DC%2BD3sXnvFGhsb0%3D

    Article  CAS  Google Scholar 

  22. A.J. Zarur J.Y. Ying (2000) Nature 403 65 Occurrence Handle10.1038/47450 Occurrence Handle1:CAS:528:DC%2BD3cXlsl2gsQ%3D%3D Occurrence Handle10638751

    Article  CAS  PubMed  Google Scholar 

  23. A. Corma U. Diaz M.E. Domine V. Fornés (2000) Angew. Chem. Int. Ed 39 1499 Occurrence Handle10.1002/(SICI)1521-3773(20000417)39:8<1499::AID-ANIE1499>3.0.CO;2-0 Occurrence Handle1:CAS:528:DC%2BD3cXjtFSqsLk%3D

    Article  CAS  Google Scholar 

  24. J.M. Thomas R. Raja G. Sankar R.G. Bell (1999) Nature 398 227 Occurrence Handle10.1038/18417 Occurrence Handle1:CAS:528:DyaK1MXitVGlur8%3D

    Article  CAS  Google Scholar 

  25. R. Raja G. Sankar J.M. Thomsa (2000) Angew. Chem. Int. Ed 39 2313 Occurrence Handle10.1002/1521-3773(20000703)39:13<2313::AID-ANIE2313>3.0.CO;2-Z Occurrence Handle1:CAS:528:DC%2BD3cXltlGku70%3D

    Article  CAS  Google Scholar 

  26. M.D. Jones R. Raja J.M. Thomas F.G. Johnson D.W. Lewis J. Rouzaud K.D.M. Harris (2003) Angew. Chemie 42 4326 Occurrence Handle10.1002/anie.200250861 Occurrence Handle1:CAS:528:DC%2BD3sXotVWqu7g%3D

    Article  CAS  Google Scholar 

  27. R. Raja J.M. Thomas M.D. Jones B.F.G. Johnson D.E.W. Vaughan (2003) J. Amer. Chem. Soc 125 14982 Occurrence Handle10.1021/ja030381r Occurrence Handle1:CAS:528:DC%2BD3sXovFeis7Y%3D

    Article  CAS  Google Scholar 

  28. A. Katz M.E. Davis (2000) Nature 403 283 Occurrence Handle10.1038/35002027 Occurrence Handle10659841

    Article  PubMed  Google Scholar 

  29. J.S. Beck J.C. Vartuli W.J. Roth M.E. Leonowicz C.T. Kresge K.D. Schmitt C.T.-W. Chu D.H. Olson E.W. Sheppard S.B. McCullen J.B. Higgins J.L. Schlenker (1992) J. Amer. Chem. Soc 114 10834 Occurrence Handle10.1021/ja00053a020 Occurrence Handle1:CAS:528:DyaK38Xms1entr8%3D

    Article  CAS  Google Scholar 

  30. Q. Huo D.I. Margolese G.D. Stucky (1996) Chem. Mater 8 1147 Occurrence Handle10.1021/cm960137h Occurrence Handle1:CAS:528:DyaK28XisVyms7Y%3D

    Article  CAS  Google Scholar 

  31. H. Yan C.F. Blanford B.T. Hollan W.H. Smyrl A. Stein (2000) Chem. Mater 12 1134 Occurrence Handle10.1021/cm9907763 Occurrence Handle1:CAS:528:DC%2BD3cXhslentro%3D

    Article  CAS  Google Scholar 

  32. H. Masuda K. Fukuda (1995) Science 268 1466 Occurrence Handle1:CAS:528:DyaK2MXmtFKktbc%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold H. Kung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, H.H., Kung, M.C. En route to complete design of heterogeneous catalysts. Top Catal 34, 77–83 (2005). https://doi.org/10.1007/s11244-005-3791-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-3791-7

Keywords

Navigation