We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Influence of pH on the wet oxidation of phenol with copper catalyst

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work reports the influence of pH on the catalytic wet oxidation (CWO) of phenol performed with a commercial copper-based catalyst. The results obtained show that pH is a critical parameter able to modify the chemical stability of the catalyst, the significance of the oxidation reaction in the liquid phase, the reaction mechanism and, consequently, the oxidation route of phenol. Experiments have been carried out to study the mentioned aspects. Stirred basket and fixed bed reactors (FBRs) have been employed, at 140 °C and at 16 bar of oxygen pressure. Three initial pH values have been used: 6 (the pH of the phenol solution), 3.5 (adjusted by H2SO4) and 8 (by addition of Na2CO3). Furthermore, some phenol oxidation runs without solid catalyst but with different concentrations of copper in solution have been accomplish at pHo=3.5. At acid pH, important leaching of copper from the catalyst to the solution was achieved, finding this negligible at pH 8. It was found that the major contribution to the phenol conversion reached at acid pH by using the solid catalyst was due to the catalytic activity of the leached copper. Both oxidation mechanisms at acid and basic conditions have been elucidated to explain the differences in the type and distribution of the intermediates obtained. The catalytic phenol oxidation route found at pH=8 comprises intermediates less toxic than phenol while at acid pH the cyclic intermediates formed as first oxidation intermediates are far more toxic than phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dojlido G.A. Best (1993) Chemistry of Water and Water Pollution Ellis Horwood New York

    Google Scholar 

  2. H.H. Guyer (1998) Industrial Processes and Waste Stream Management John Wiley and sons New York

    Google Scholar 

  3. R.A. Corbit (1989) Environmental Engineering McGraw Hill New York

    Google Scholar 

  4. H.M. Freeman (1997) Standard Handbook of Hazardous Waste McGraw Hill New York

    Google Scholar 

  5. E.F. Gloyna L. Li (1995) Environ. Prog. 14 IssueID3 182 Occurrence Handle1:CAS:528:DyaK2MXnvFaiu7s%3D

    CAS  Google Scholar 

  6. S.T. Kolaczkowski P. Plucinski F.J. Beltran F.J. Rivas A.B. Mclurgh (1999) Chem. Eng. J. 73 143 Occurrence Handle1:CAS:528:DyaK1MXks1Ckt7o%3D

    CAS  Google Scholar 

  7. Y.I. Matatov-Meytal M. Sheintuch (1988) Ind. Eng. Chem. Res. 37 309

    Google Scholar 

  8. S. Imamura (1999) Ind. Eng. Chem. Res. 38 1743 Occurrence Handle1:CAS:528:DyaK1MXhvF2ms70%3D

    CAS  Google Scholar 

  9. J. Donlagic J. Levec (1998) Environ. Sci. Technol. 32 1294 Occurrence Handle1:CAS:528:DyaK1cXitVyru7s%3D

    CAS  Google Scholar 

  10. S. Hocevar U.O. Krasovec B. Orel A.S. AricÓ H. Kim (2000) Appl. Catal. B: Environ. 28 113 Occurrence Handle1:CAS:528:DC%2BD3cXntFyiur8%3D

    CAS  Google Scholar 

  11. F. Arena R. Giovenco T. Torre A. Venuto A. Paramliana (2003) Appl. Catal. B: Environ. 45 51 Occurrence Handle1:CAS:528:DC%2BD3sXms1Cktbk%3D

    CAS  Google Scholar 

  12. Z. Ding S. Aki M.A. Abraham (1995) Environ. Sci. Technol. 29 2748 Occurrence Handle1:CAS:528:DyaK2MXot1yltbg%3D

    CAS  Google Scholar 

  13. R.A. Sheldon M. Walalu I.W.C.E. Arends U. Schuchart (1998) Acc. Chem. Res. 31 IssueID8 485 Occurrence Handle1:CAS:528:DyaK1cXltF2qs7o%3D

    CAS  Google Scholar 

  14. A. Fortuny C. Bengoa J. Font A. Fabregat (1999) J. Hazard. Mat. B 64 181 Occurrence Handle1:CAS:528:DyaK1MXhtFansbo%3D

    CAS  Google Scholar 

  15. A. Santos P. Yustos A. Quintanilla S. Rodríguez F. García-Ochoa (2002) Appl. Catal. B: Environ. 39 97 Occurrence Handle1:CAS:528:DC%2BD38Xnt1aisLs%3D

    CAS  Google Scholar 

  16. A. Santos, P. Yustos, A. Quintanilla and F. García-Ochoa, Appl. Catal. B: Environ. (2004). Submitted

  17. A. Pintar Levec (1994) J. Chem. Eng. Sci. 49 IssueID(24 4391 Occurrence Handle1:CAS:528:DyaK2MXksFCksbY%3D

    CAS  Google Scholar 

  18. C. Miro A. Alejandre A. Fortuny C. Bengoa J. Font A. Fabregat (1999) Water Res. 33 IssueID4 1005 Occurrence Handle1:CAS:528:DyaK1MXht1eis7g%3D

    CAS  Google Scholar 

  19. A. Santos E. Barroso F. García-Ochoa (1999) Catal. Today 48 109 Occurrence Handle1:CAS:528:DyaK1MXkslKrug%3D%3D

    CAS  Google Scholar 

  20. A. Santos P. Yustos A. Quintanilla F. García-Ochoa J.A. Casas J.J. Rodríguez (2004) Environ. Sci. Technol. 38 133 Occurrence Handle1:CAS:528:DC%2BD3sXovVyrt70%3D Occurrence Handle14740728

    CAS  PubMed  Google Scholar 

  21. N.C. Shang Y.H. Yu (2002) Environ. Technol. 23 43 Occurrence Handle1:CAS:528:DC%2BD38XisVyqt7k%3D Occurrence Handle11918401

    CAS  PubMed  Google Scholar 

  22. N.C. Shang Y-H. Yu (2001) J. Environ. Sci. Health, Part A. 36 IssueID3 383

    Google Scholar 

  23. N.C. Shang Y.H. Yu H.W. Ma (2002) J. Environ. Sci. Health Part A. 37 IssueID2 261

    Google Scholar 

  24. L. Bolduc W.A. Anderson (1997) Biodegradation 8 IssueID4 237 Occurrence Handle1:CAS:528:DyaK1cXisFGqtbg%3D Occurrence Handle9523451

    CAS  PubMed  Google Scholar 

  25. A. Svenson P.A. Hynning (1997) Chemosphere 34 IssueID8 1685 Occurrence Handle1:CAS:528:DyaK2sXisFeguro%3D

    CAS  Google Scholar 

  26. A. Santos P. Yustos B. Durbán F. García-Ochoa (2001) Environ. Sci. Technol. 35 IssueID13 2828 Occurrence Handle1:CAS:528:DC%2BD3MXjvFSlu70%3D Occurrence Handle11452617

    CAS  PubMed  Google Scholar 

  27. A. Sadana J.R. Katzer (1974) J. Catal. 35 140 Occurrence Handle1:CAS:528:DyaE2cXls1yru7c%3D

    CAS  Google Scholar 

  28. P.D. Vaidya V.V. Mahajani (2002) Chem. Eng. J. 87 403 Occurrence Handle1:CAS:528:DC%2BD38XlvVGmsrk%3D

    CAS  Google Scholar 

  29. H. Ohta S. Goto H. Teshima (1980) Ind. Eng. Chem. Fundam. 19 IssueID2 180 Occurrence Handle1:CAS:528:DyaL3cXhvVejsLs%3D

    CAS  Google Scholar 

  30. A. Eftaxias J. Font A. Fortuny J. Giralt A. Fabregat F. Stuber (2001) Appl. Catal. B: Environ. 33 175 Occurrence Handle1:CAS:528:DC%2BD3MXms1Knurs%3D

    CAS  Google Scholar 

  31. C.Y. Chen C.L. Lu (2002) Sci. Total Environ. 289 123 Occurrence Handle1:CAS:528:DC%2BD38XivVSitLc%3D Occurrence Handle12049388

    CAS  PubMed  Google Scholar 

  32. B. Hauser G. Schrader M. Bahadir (1997) Ecotoxicol. Environ. Saf. 38 227 Occurrence Handle1:CAS:528:DyaK1cXhtlWjs7c%3D Occurrence Handle9469873

    CAS  PubMed  Google Scholar 

  33. R. Guerra (2001) Chemosphere 44 1737 Occurrence Handle1:CAS:528:DC%2BD3MXlvFWht78%3D Occurrence Handle11534905

    CAS  PubMed  Google Scholar 

  34. V.L.K. Jennings M.H. Rayner–Brandes D.J. Brid (2001) Water Res. 35 IssueID14 3448 Occurrence Handle1:CAS:528:DC%2BD3MXlslaguro%3D Occurrence Handle11547867

    CAS  PubMed  Google Scholar 

  35. K.L.E. Kaiser V.S. Palabrica (1991) Water Pollut. Res. J. Can. 26 IssueID3 361 Occurrence Handle1:CAS:528:DyaK38XktVahsbs%3D

    CAS  Google Scholar 

  36. W.F.L.M. Hoeben, Ph.D. Thesis, (Eindhoven University of Technology, Germany, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A., Yustos, P., Quintanilla, A. et al. Influence of pH on the wet oxidation of phenol with copper catalyst. Top Catal 33, 181–192 (2005). https://doi.org/10.1007/s11244-005-2524-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-2524-2

Keywords

Navigation