Skip to main content
Log in

A new [SiMo12O40]4−-based metal organic framework: synthesis, structure, photo-/electro-catalytic and absorption properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The water pollution problems caused by organic dyes, inorganic ions and other pollutants are becoming more and more serious, and the removal of pollutants from wastewater is still a challenge. A polyoxometalate-based metal organic framework [Pr4(bpdc)4(H2O)10]·SiMo12O40·3H2O (1) (H2bpdc = 2,2′-bipyridine-6,6′-dicarboxylic acid) was synthesized for multi-functional treatment of pollutants in water. Structural analysis revealed that Keggin-type polyanions are sandwiched between adjacent lanthanide-organic layers. Electrochemical and dye removal experiments showed that compound 1 can not only reduce NO2 and BrO3 pollutants in water by electrocatalytic oxidation, but also photocatalytically degrade and adsorb cationic organic dye pollutants in water, and even adsorb cationic organic dyes from mixed dyes solution. It has been proved that compound 1 is a multifunctional water treatment agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Adnan MAM, Julkapli NM, Amir MNI, Maamor A (2019) Environ Sci Technol 16:547. https://doi.org/10.1007/s13762-018-1857-x

    Article  CAS  Google Scholar 

  2. Zeng L, Xiao L, Long Y, Shi X (2018) J Colloid Interface Sci 516:274. https://doi.org/10.1016/j.jcis.2018.01.070

    Article  CAS  PubMed  Google Scholar 

  3. Zhang G, Lou XY, Li MH, Yang YW (2022) Dyes Pigm 206:110576. https://doi.org/10.1016/j.dyepig.2022.110576

    Article  CAS  Google Scholar 

  4. Ahmad R, Ejaz MO (2023) Dyes Pigm 216:111305. https://doi.org/10.1016/j.dyepig.2023.111305

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhang Y, Li L, Chen J, Li P, Huang W (2020) J Electroanal Chem 861:113939. https://doi.org/10.1016/j.jelechem.2020.113939

    Article  CAS  Google Scholar 

  6. Zhang HY, Liu L, Wang HJ, Sun JW (2021) J Solid State Chem 296:121986. https://doi.org/10.1016/j.jssc.2021.121986

    Article  CAS  Google Scholar 

  7. Phoonsawat K, Dungchai W (2021) Talanta 221:121590. https://doi.org/10.1016/j.talanta.2020.121590

    Article  CAS  PubMed  Google Scholar 

  8. Chi J, Fan M, Su Z, Li X, Sun J, Zhou C, Hu X (2020) New J Chem 44:13524. https://doi.org/10.1039/D0NJ00169D

    Article  CAS  Google Scholar 

  9. Liang Y, Kang N, Wang C, Yu K, Lv J, Wang C, Zhou B (2022) Dalton Trans 51:7613. https://doi.org/10.1039/d2dt00976e

    Article  CAS  Google Scholar 

  10. He JY, Bi HX, Liu YQ, Guo MS, An WT, Ma YY, Han ZG (2024) Inorg Chem 63:842. https://doi.org/10.1021/acs.inorgchem.3c03841

    Article  CAS  PubMed  Google Scholar 

  11. Damjanović V, Pisk J, Kuzman D, Agustin D, Vrdoljak V, Stilinović V, Cindrić M (2019) Dalton Trans 48:9974. https://doi.org/10.1039/c9dt01625b

    Article  CAS  PubMed  Google Scholar 

  12. Chang S, Chen Y, An H, Zhu Q, Luo H, Huang Y (2021) Green Chem 23:8591. https://doi.org/10.1039/d1gc03061b

    Article  CAS  Google Scholar 

  13. Zhang HL, Liao JZ, Yang W, Wu XY, Lu CZ (2017) Dalton Trans 46:4898. https://doi.org/10.1039/c7dt00631d

    Article  CAS  PubMed  Google Scholar 

  14. Liu JC, Wang JF, Han Q, Shangguan P, Liu LL, Chen LJ, Zhao JW, Streb C, Song YF (2021) Angew Chem Int Ed 60:11153. https://doi.org/10.1002/anie.202017318

    Article  CAS  Google Scholar 

  15. Sood P, Joshi A, Singh M (2020) Nanoscale Adv 4:5015. https://doi.org/10.1039/d2na00646d

    Article  CAS  Google Scholar 

  16. Chen X, Wu H, Shi X, Wu L (2023) Nanoscale 15:9242. https://doi.org/10.1039/d3nr01176c

    Article  CAS  PubMed  Google Scholar 

  17. Zhao X, Wang X, Zhao Y, Sun H, Tan H, Qiu T, Zhao Z, Zhao X, Cheng S, Li Y (2021) Environ Sci Nano 8:3855. https://doi.org/10.1039/d1en00827g

    Article  CAS  Google Scholar 

  18. Li FC, Tan LK, Li XL, Kong HJ, Ge LM, Yue LY, Han LF (2019) Dalton Trans 48:5831. https://doi.org/10.1039/C9DT00499H

    Article  CAS  PubMed  Google Scholar 

  19. Daraie M, Lotfan N, Heravi MM, Mirzaei M (2020) React Kinet Mech Catal 129:391. https://doi.org/10.1007/s11144-019-01709-3

    Article  CAS  Google Scholar 

  20. Yang L, Zhang Z, Zhang CN, Wang XL (2024) Rare Met 43:236. https://doi.org/10.1007/s12598-023-02435-5

    Article  CAS  Google Scholar 

  21. Hosseinzadeh-Baghan S, Mirzaei M, Eshtiagh-Hosseini H, Zadsirjan V, Heravi MM, Mague JT (2020) Appl Organomet Chem 34:e5793. https://doi.org/10.1002/aoc.5793

    Article  CAS  Google Scholar 

  22. Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C (2019) ACS Catal 9:10174. https://doi.org/10.1021/acscatal.9b03439

    Article  CAS  Google Scholar 

  23. Samaniyan M, Mirzaei M, Gomila RM, Eshtiagh-Hosseini H, Lotfian N, Mague JT, Poura AN, Frontera A (2021) Dalton Trans 50:1895. https://doi.org/10.1039/d0dt03891a

    Article  CAS  PubMed  Google Scholar 

  24. Mirzaei M, Eshtiagh-Hosseini H, Lotfian N, Salimi A, Bauzá A, Deun RV, Decadt R, Barceló-Oliverb M, Frontera A (2014) Dalton Trans 43:1906. https://doi.org/10.1039/c3dt51971f

    Article  CAS  PubMed  Google Scholar 

  25. Zhao HY, Li JY, Dong DP, Wang L (2021) J Mol Struct 1239:130387. https://doi.org/10.1016/j.molstruc.2021.130387

    Article  CAS  Google Scholar 

  26. Yin XY, Zhang YQ, Ma YY, He JY, Song H, Han ZG (2022) Inorg Chem 61:13174. https://doi.org/10.1021/acs.inorgchem.2c02016

    Article  CAS  PubMed  Google Scholar 

  27. Yin XY, Bi HX, Song H, He JY, Ma YY, Fang TT, Han ZG (2023). Polyoxometalates. https://doi.org/10.26599/POM.2023.9140027

    Article  Google Scholar 

  28. Jia J, Xiao S, Tao Y, Zhang H, Chen S, Wang H, Bu M, Sun J (2023) J Solid State Chem 324:124109. https://doi.org/10.1016/j.jssc.2023.124109f

    Article  CAS  Google Scholar 

  29. Zhang XJ, Ma YY, Bi HX, Yin XY, Song H, Liu MH, Han ZG (2022) Inorg Chem Front 9:6457. https://doi.org/10.1039/d2qi01936a

    Article  CAS  Google Scholar 

  30. An W, Zhang X, Niu J, Ma Y, Han Z (2022) Chin Chem Lett 33:4400. https://doi.org/10.1016/j.cclet.2021.12.021

    Article  CAS  Google Scholar 

  31. Niu JQ, An WT, Zhang XJ, Ma YY, Han ZG (2021) Chem Eng J 418:129408. https://doi.org/10.1016/j.cej.2021.129408

    Article  CAS  Google Scholar 

  32. Ren YL, Wang F, Hu HM, Chang ZG, Yang ML, Xue GL (2015) Inorg Chim Acta 434:104. https://doi.org/10.1016/j.ica.2015.05.018

    Article  CAS  Google Scholar 

  33. Li QW, Liu JL, Jia JH, Leng JD, Lin WQ, Chen YC, Tong ML (2013) Dalton Trans 42:11262. https://doi.org/10.1039/c3dt51220g

    Article  CAS  PubMed  Google Scholar 

  34. Geng JQ, Lu Y, Zhang R, Lv YX, Huang ST, Yang YY, Qu X, Shi HF, Jin H, Yu XY (2024) J Mol Struct 1302:137502. https://doi.org/10.1016/j.molstruc.2024.137502

    Article  CAS  Google Scholar 

  35. Li D, Ma P, Niu J, Wang J (2019) Coord Chem Rev 392:49. https://doi.org/10.1016/j.ccr.2019.04.008

    Article  CAS  Google Scholar 

  36. Brown ID, Altermat D (1985) Acta Cryst B41:244. https://doi.org/10.1107/s0108768185002063

    Article  CAS  Google Scholar 

  37. Wang X, Zhang S, Wang X, Liu G, Lin H, Zhang H (2018) Transit Met Chem 43:397. https://doi.org/10.1007/s11243-018-0227-3

    Article  CAS  Google Scholar 

  38. Shi Y, Zhou T, Di JQ, Wang W, Ma L, Zhang H, Gao Y (2022) Dalton Trans 51:3304. https://doi.org/10.1039/d1dt03862a

    Article  CAS  PubMed  Google Scholar 

  39. Tian AX, Fu YB, Cui HT, Ying J, Yang ML, Yang Y, Wang XL (2019) New J Chem 43:9980. https://doi.org/10.1039/c9nj02224d

    Article  CAS  Google Scholar 

  40. Mou HC, Ying J, Tian AX, Cui HT, Wang XL (2020) New J Chem 44:15122. https://doi.org/10.1039/d0nj00103a

    Article  CAS  Google Scholar 

  41. Hu S, Li K, Yu X, Jin Z, Xiao B, Yang R, Pang H, Ma H, Wang X, Tan L, Yang G (2022) J Mol Struct 1250:131753. https://doi.org/10.1016/j.molstruc.2021.131753

    Article  CAS  Google Scholar 

  42. Pan X, Wang X, Wang X, Li Y, Liu G, Lin H (2019) CrystEngComm 21:6472. https://doi.org/10.1039/c9ce01394f

    Article  CAS  Google Scholar 

  43. Lu JJ, Liang JJ, Lin HY, Liu QQ, Cui ZW, Wang XL (2022) CrystEngComm 24:3921. https://doi.org/10.1039/d2ce00504b

    Article  CAS  Google Scholar 

  44. Xu X, Zhang Y, Ying J, Jin L, Tian A, Wang X (2022) CrystEngComm 24:1267. https://doi.org/10.1039/d1ce01596f

    Article  CAS  Google Scholar 

  45. Du L, Lu L, Shi C, Wang HY, Wang J, Singh A, Kumar A (2021) CrystEngComm 23:6400. https://doi.org/10.1039/d1ce00640a

    Article  CAS  Google Scholar 

  46. Liang Q, Cui S, Liu C, Xu S, Yao C, Li Z (2018) J Colloid Interf Sci 524:379. https://doi.org/10.1016/j.jcis.2018.03.114

    Article  CAS  Google Scholar 

  47. Ma S, Ying J, Zhang Y, Tian A (2022) CrystEngComm 24:2891. https://doi.org/10.1039/d2ce00255h

    Article  CAS  Google Scholar 

  48. Wang XL, Song G, Lin HY, Wang X, Liu GC, Rong X (2018) CrystEngComm 20:51. https://doi.org/10.1039/c7ce01092c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support provided by the National Natural Science Foundation of China (No. 21902058, No. 22071080 and No. 222060555), the Natural Science Foundation of Jilin Province (No. YDZJ202101ZYTS175, YDZJ202101ZYTS096, YDZJ202201ZYTS360 and 20220101091JC), the Scientific Research Fund of Education Department of Jilin Province (No. JJKH20220234KJ) and acknowledge the assistance of JLICT Center of Characterization and Analysis.

Author information

Authors and Affiliations

Authors

Contributions

Jia-Qi Geng and Xiao-Yang Yu wrote the main manuscript text and prepared all the figures. Yang Lu did the photocatalytic experiments. Lu Yang, Xue Jiang and Lu-Kai Huang did the synthesis experiments. Xiao-Shu Qu and Yan-Yan Yang did the electrochemical experiments. Hua Jin and Xue-Mei Li did the absorption experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiao-Yang Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7451 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, JQ., Lu, Y., Yang, L. et al. A new [SiMo12O40]4−-based metal organic framework: synthesis, structure, photo-/electro-catalytic and absorption properties. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00585-8

Navigation