Skip to main content
Log in

N-doped TiO2 for photocatalytic degradation of colorless and colored organic pollutants under visible light irradiation

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) can only be stimulated by UV light, making its real application for photocatalytic water treatments ineffective, particularly under sunlight and visible light irradiation. As a result, significant efforts have been conducted over the last decades to fabricate visible light-active TiO2 photocatalysts through band-gap engineering. Herein, nitrogen-doped titanium dioxide (N-TiO2) photocatalysts were effectively prepared by utilizing a simple sol–gel process with ethanol as a single solvent and urea as the nitrogen source under ambient temperature and pressure. The effects of urea concentration (0, 2, 4, 6 urea/TTIP mol ratio) on the optical, structural, morphological, and photocatalytic properties of the photocatalysts were investigated. SEM morphology revealed an aggregated nano-spherical shape in all samples. HR-TEM and SAED patterns showed an anatase phase of 2-N-TiO2. The X-ray diffraction analysis also showed a pure anatase phase for pure TiO2, 2-N-TiO2, and 4-N-TiO2. However, the crystalline phase transformed to amorphous for 6-N-TiO2. The crystallite size reduced from 14.16 to 9.76 nm upon increasing urea concentration. The band-gap energy of N-TiO2 also decreased from 3.25 to 2.95 eV. Furthermore, the photocatalytic experiment was examined for the degradation of colorless and colored pollutants, such as salicylic acid (SA), methyl blue (MB), and rhodamine B (RhB). The results showed the photocatalytic activity of 2-N-TiO2 exhibited an optimum efficiency compared to the 4-N-TiO2 and 6-N-TiO2, for photocatalytic degradation of SA (k = 0.0265 min−1), MB (k = 0.0180 min−1) and RhB (k = 0.1071 min−1), under visible light irradiation. Therefore, the results suggest that crystallite size, urea (as an N dopant) concentration, and organic model pollutants were critical parameters for the photocatalytic activity of N-TiO2 under visible irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data are shown in the manuscript and supplementary information.

References

  1. Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 258:120694. https://doi.org/10.1016/j.jclepro.2020.120694

    Article  CAS  Google Scholar 

  2. Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42:251–325. https://doi.org/10.1080/10643389.2010.507698

    Article  CAS  Google Scholar 

  3. Nobre FX, Gil Pessoa WA, Ruiz YL et al (2019) Facile synthesis of nTiO2 phase mixture: characterization and catalytic performance. Mater Res Bull 109:60–71. https://doi.org/10.1016/j.materresbull.2018.09.019

    Article  CAS  Google Scholar 

  4. Mangala KJ (2023) Green synthesis of titanium dioxide nanoparticles using Thymus vulgaris leaf extract for biological applications. Adv Nat Sci Nanosci Nanotechnol 14:35016. https://doi.org/10.1088/2043-6262/acf2ed

    Article  Google Scholar 

  5. Khan MM, Ansari SA, Pradhan D et al (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644. https://doi.org/10.1039/c3ta14052k

    Article  CAS  Google Scholar 

  6. Natarajan TS, Mozhiarasi V, Tayade RJ (2021) Nitrogen doped titanium dioxide (N-TiO2): synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications. Photochem 1:371–410. https://doi.org/10.3390/photochem1030024

    Article  Google Scholar 

  7. Ancy K, Sarojini V, Christy AJ et al (2022) Antibacterial activities and photocatalyzed degradation of textile dyeing waste water by Mn and F co-doped TiO2 nanoparticles. Adv Nat Sci Nanosci Nanotechnol 13:45005. https://doi.org/10.1088/2043-6262/ac9c53

    Article  CAS  Google Scholar 

  8. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852. https://doi.org/10.1021/cr5000738

    Article  CAS  PubMed  Google Scholar 

  9. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009. https://doi.org/10.1039/C5NJ03478G

    Article  CAS  Google Scholar 

  10. Calisir MD, Gungor M, Demir A et al (2020) Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities. Ceram Int 46:16743–16753. https://doi.org/10.1016/j.ceramint.2020.03.250

    Article  CAS  Google Scholar 

  11. Suwannaruang T, Kamonsuangkasem K, Kidkhunthod P et al (2018) Influence of nitrogen content levels on structural properties and photocatalytic activities of nanorice-like N-doped TiO2 with various calcination temperatures. Mater Res Bull 105:265–276. https://doi.org/10.1016/j.materresbull.2018.05.010

    Article  CAS  Google Scholar 

  12. Khalili V, Khalil-Allafi J, Maleki-Ghaleh H (2013) Titanium oxide (TiO2) coatings on NiTi shape memory substrate using electrophoretic deposition process. Int J Eng Trans A Basics 26:707–712. https://doi.org/10.5829/idosi.ije.2013.26.07a.05

    Article  Google Scholar 

  13. Suwannaruang T, Kidkhunthod P, Chanlek N et al (2019) High anatase purity of nitrogen-doped TiO2 nanorice particles for the photocatalytic treatment activity of pharmaceutical wastewater. Appl Surf Sci 478:1–14. https://doi.org/10.1016/j.apsusc.2019.01.158

    Article  CAS  Google Scholar 

  14. Sanchez-Martinez A, Ceballos-Sanchez O, Koop-Santa C et al (2018) N-doped TiO2 nanoparticles obtained by a facile coprecipitation method at low temperature. Ceram Int 44:5273–5283. https://doi.org/10.1016/j.ceramint.2017.12.140

    Article  CAS  Google Scholar 

  15. Marques J, Gomes TD, Forte MA et al (2019) A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor. Catal Today. https://doi.org/10.1016/j.cattod.2018.09.002

    Article  Google Scholar 

  16. Wafi A, Szabó-Bárdos E, Horváth O et al (2021) Coumarin-based quantification of hydroxyl radicals and other reactive species generated on excited nitrogen-doped TiO2. J Photochem Photobiol A Chem 404:112913. https://doi.org/10.1016/j.jphotochem.2020.112913

    Article  CAS  Google Scholar 

  17. Hu Y, Liu H, Kong X, Guo X (2014) Effect of calcination on the visible light photocatalytic activity of N-doped TiO2 prepared by the sol-gel method. J Nanosci Nanotechnol 14:3532–3537. https://doi.org/10.1166/jnn.2014.8021

    Article  CAS  PubMed  Google Scholar 

  18. Khan JA, Sayed M, Shah NS et al (2023) Synthesis of N-doped TiO2 nanoparticles with enhanced photocatalytic activity for 2,4-dichlorophenol degradation and H2 production. J Environ Chem Eng 11:111308. https://doi.org/10.1016/j.jece.2023.111308

    Article  CAS  Google Scholar 

  19. Mahendrasingh P, Vrushali N, Manisha G et al (2020) Effect of nitrogen doping on photocatalytic activity of TiO2. J Nanosci Technol 6:918–923. https://doi.org/10.30799/jnst.312.20060401

    Article  Google Scholar 

  20. Zhang T, Sun L, Liu R et al (2012) A novel naturally occurring salicylic acid analogue acts as an anti-inflammatory agent by inhibiting nuclear factor-kappaB activity in RAW264.7 macrophages. Mol Pharm 9:671–677. https://doi.org/10.1021/mp2003779

    Article  CAS  PubMed  Google Scholar 

  21. Kaur H, Kaur R (2014) Removal of Rhodamine-B dye from aqueous solution onto Pigeon dropping: adsorption, kinetic, equilibrium and thermodynamic studies. J Mater Environ Sci 5:1830–1838

    Google Scholar 

  22. Wafi A, Szabó-Bárdos E, Horváth O et al (2020) The photocatalytic and antibacterial performance of nitrogen-doped TiO2: surface-structure dependence and silver-deposition effect. Nanomaterials 10:2261. https://doi.org/10.3390/nano10112261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung WJ, Nguyen DD, Bui XT et al (2018) A magnetically separable and recyclable Ag-supported magnetic TiO2 composite catalyst: fabrication, characterization, and photocatalytic activity. J Environ Manage 213:541–548. https://doi.org/10.1016/j.jenvman.2018.02.064

    Article  CAS  PubMed  Google Scholar 

  24. Asadzadeh Patehkhor H, Fattahi M, Khosravi-Nikou M (2021) Synthesis and characterization of ternary chitosan–TiO2–ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater. Sci Rep 11:24177. https://doi.org/10.1038/s41598-021-03492-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xia Z, Xing S, Wang H et al (2022) Weak-visible-light-driven Fe doped TiO2 photocatalyst prepared by coprecipitation method and degradation of methyl orange. Opt Mater (Amst) 129:112522. https://doi.org/10.1016/j.optmat.2022.112522

    Article  CAS  Google Scholar 

  26. Yu JG, Yu HG, Cheng B et al (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879. https://doi.org/10.1021/jp036158y

    Article  CAS  Google Scholar 

  27. Cheng J, Chen J, Lin W et al (2015) Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl Surf Sci 332:573–580. https://doi.org/10.1016/J.APSUSC.2015.01.218

    Article  CAS  Google Scholar 

  28. Cheng X, Yu X, Xing Z, Yang L (2016) Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arab J Chem 9:S1706–S1711. https://doi.org/10.1016/j.arabjc.2012.04.052

    Article  CAS  Google Scholar 

  29. Li Y, Jiang Y, Peng S, Jiang F (2010) Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. J Hazard Mater 182:90–96. https://doi.org/10.1016/J.JHAZMAT.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  30. Kim HK, Roh JS, Choi DJ (2010) Crystallization behavior caused by N doping in Ge1Sb 4Te7 for PCRAM application. Thin Solid Films 518:6422–6428. https://doi.org/10.1016/j.tsf.2010.02.002

    Article  CAS  Google Scholar 

  31. Shehata MA, Shama SA, Mahmoud SA, Doheim MM (2016) Preparation and characterization of various interstitial N-Doped TiO2 catalysts from different nitrogen dopants for the treatment of polluted water. Chem Mater Res 8:45–55

    Google Scholar 

  32. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Appl Catal B Environ 170–171:153–161. https://doi.org/10.1016/j.apcatb.2015.01.039

    Article  CAS  Google Scholar 

  33. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.96.026103

    Article  PubMed  Google Scholar 

  34. Yang G, Jiang Z, Shi H et al (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309. https://doi.org/10.1039/c0jm00376j

    Article  CAS  Google Scholar 

  35. Samsudin EM, Abd Hamid SB, Juan JC et al (2015) Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine. RSC Adv 5:44041–44052. https://doi.org/10.1039/c5ra00890e

    Article  CAS  Google Scholar 

  36. Leyva-Porras C, Toxqui-Teran A, Vega-Becerra O et al (2015) Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol-gel method. J Alloys Compd 647:627–636. https://doi.org/10.1016/j.jallcom.2015.06.041

    Article  CAS  Google Scholar 

  37. Wang G, Xu L, Zhang J et al (2012) Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. Int J Photoenergy 2012:1–9. https://doi.org/10.1155/2012/265760

    Article  CAS  Google Scholar 

  38. Ma J, Chu J, Qiang L, Xue J (2013) Effect of different calcination temperatures on the structural and photocatalytic performance of Bi-TiO2/SBA-15. Int J Photoenergy 2013:1–11. https://doi.org/10.1155/2013/875456

    Article  CAS  Google Scholar 

  39. Yu J, Yu JC, Cheng B, Zhao X (2003) Preparation and characterization of highly photoactive nanocrystalline TiO2 powders by solvent evaporation-induced crystallization method. Sci China Ser B Chem 46:549–557. https://doi.org/10.1360/03YB0012/METRICS

    Article  Google Scholar 

  40. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting Physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/PAC198557040603/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  41. Ayinla RT, Dennis JO, Zaid HM et al (2019) A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. J Clean Prod 229:1427–1442. https://doi.org/10.1016/j.jclepro.2019.04.116

    Article  CAS  Google Scholar 

  42. Khan MM (2023) Theoretical concepts of photocatalysis. Elsevier, Netherlands. https://doi.org/10.1016/C2021-0-01798-3

    Google Scholar 

  43. Khan MM, Pradhan D, Sohn Y (2017) Springer series on polymer and composite materials. Nanocomposites for visible light-induced photocatalysis. Springer, Cham, Switzerland, pp 1–200. https://doi.org/10.1007/978-3-319-62446-4

    Chapter  Google Scholar 

  44. Dong S, Feng J, Fan M et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630. https://doi.org/10.1039/c4ra13734e

    Article  CAS  Google Scholar 

  45. Kisch H (2013) Semiconductor photocatalysis - Mechanistic and synthetic aspects. Angew Chem Int Ed 52:812–847. https://doi.org/10.1002/anie.201201200

    Article  CAS  Google Scholar 

  46. Zhu X, Zhou Q, Xia Y et al (2021) Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity. J Mater Sci Mater Electron 32:21511–21524. https://doi.org/10.1007/s10854-021-06660-5

    Article  CAS  Google Scholar 

  47. Zhu X, Wang J, Yang D et al (2021) Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light. RSC Adv 11:27257–27266. https://doi.org/10.1039/d1ra05060e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohtar SS, Aziz F, Ismail AF et al (2021) Impact of doping and additive applications on photocatalyst textural properties in removing organic pollutants: a review. Catalysts 11:1160

    Article  CAS  Google Scholar 

  49. Zhang Y, Zhou J, Li Z, Feng Q (2018) Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation. J Mater Sci 53:3149–3162. https://doi.org/10.1007/s10853-017-1779-x

    Article  CAS  Google Scholar 

  50. Pal S, Taurino A, Catalano M, Licciulli A (2022) Block copolymer and cellulose templated mesoporous TiO2-SiO2 nanocomposite as superior photocatalyst. Catalysts 12:770. https://doi.org/10.3390/catal12070770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by "Net Zero Emission-BRIN" program with contract number of 1567/II.7/HK.01.00/3/2023; and also funded by “Program Riset dan Inovasi untuk Indonesia Maju Gelombang 3" with contract number of 12/II.7/HK/2023; and supported by the Ministry for Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the 2021 Thematic Excellence Program funding scheme with a grant number TKP2021-NKTA-21.

Author information

Authors and Affiliations

Authors

Contributions

AW contributed to conceptualization, data curation, formal analysis, methodology, investigation, visualization, and writing—original draft. LR contributed to methodology, investigation, data curation and visualization. GET contributed to conceptualization, data curation, funding acquisition, supervision, validation, and writing—review and editing. DA contributed to validation, and writing—review and editing. DSK contributed to validation, and writing—review and editing. ND contributed to validation, and writing—review and editing. NY contributed to data curation and investigation. E.S.-B contributed to validation, and writing—review and editing, supervision. OH contributed to validation, and writing—review and editing, supervision. MMK contributed to validation, and writing—review and editing, supervision.

Corresponding author

Correspondence to Abdul Wafi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 400 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wafi, A., Roza, L., Timuda, G.E. et al. N-doped TiO2 for photocatalytic degradation of colorless and colored organic pollutants under visible light irradiation. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00584-9

Navigation