Skip to main content
Log in

New organotin(IV) complexes derived from 1-adamantanethiol: synthesis, crystal structure, DFT calculation, and in vitro antifungal activity and cytotoxicity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Five new organotin(IV) complexes, Me2SnL2 (1), n–Bu2SnL2 (2), t–Bu2SnL2 (3), Ph2SnL2 (4), and Ph3SnL (5), have been designed and synthesized by the reactions of the deprotonated 1-adamantanethiol ligand (L = C10H15S) with the corresponding R2SnCl2 (R = Me, n–Bu, t–Bu, Ph) and Ph3SnCl. The complexes were characterized by elemental analysis, FT-IR, NMR spectroscopy, and X-ray crystallography. Meanwhile, optimized geometrical parameters, harmonic vibrational frequencies, and frontier molecular orbitals were calculated. The in vitro cytotoxicities of the complexes were evaluated with HeLa and HepG-2. Furthermore, the antifungal activity of the newly synthesized complexes has been evaluated, and the SEM and TEM images were prepared from Alternaria kikuchiana Tanaka to analyze the macroscopic action of the drug on the fungus. As a result, complex 5 has good antifungal activity and cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data available within the article or its supplementary materials.

References

  1. Lawson JS, Glenn WK (2020) Infect Agent Cancer 15:41

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lewis EB (2004) In: Lipshitz HD (ed) Ionizing radiation, cancer induction and radioactive fallout. Springer

  3. Armstrong BK (2004) How sun exposure causes skin cancer: an epidemiological perspective. Springer, Netherlands

    Google Scholar 

  4. Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X (2020) Environ Health Perspect 19:117

    Google Scholar 

  5. Szorcsik A, Nagy L, Gajda-Schrantz K, Pellerito L, Nagy E, Edelmann FT (2002) J Radioanal Nucl Chem 252:523–530

    Article  CAS  Google Scholar 

  6. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  7. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA, Soerjomataram I (2022) J Hepatol 77:1598–1606

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, Spiro SG, Rolland E, Fossati R, Aubert D, Ding K, Waller D, Le Chevalier T (2008) J Clin Oncol 26:3552–3559

    Article  PubMed  Google Scholar 

  9. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

  10. Dasari S, Tchounwou PB (2014) Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R (2022) Coord Chem Rev 459:214403

    Article  CAS  Google Scholar 

  12. Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Karvembu R, Aoki S (2021) Eur J Inorg Chem 2021:1796–1814

    Article  CAS  Google Scholar 

  13. Haribabu J, Srividya S, Mahendiran D, Gayathri D, Venkatramu V, Bhuvanesh N, Karvembu R (2020) Inorg Chem 59:17109–17122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Resayes SI, Shakir M, Shahid N, Azam M, Khan AU (2016) Arab J Chem 9:335–343

    Article  CAS  Google Scholar 

  15. Azam M, Warad I, Al-Resayes S, Shakir M, Ullah MF, Ahmad A, Sarkar FH (2012) Inorg Chem Commun 20:252–258

    Article  CAS  Google Scholar 

  16. Mohapatra RK, El-ajaily MM, Alassbaly FS, Sarangi AK, Das D, Maihub AA, Ben-Gweirif SF, Mahal A, Suleiman M, Perekhoda L, Azam M, Al-Noor TH (2021) Chem Pap 75:1005–1019

    Article  CAS  Google Scholar 

  17. Amir MK, Khan S, Ziaur R, Shah A, Butler IS (2014) Inorg Chim Acta 423:14–25

    Article  CAS  Google Scholar 

  18. Zhang Q, Zhang M, Wang H, Tian X, Ma W, Luo L, Wu J, Zhou H, Li S, Tian Y (2019) J Inorg Biochem 192:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Ruan BF, Tian YP, Zhou HP, Wu JY, Hu RT, Zhu CH, Yang JX, Zhu HL (2011) Inorg Chim Acta 365:302–308

    Article  CAS  Google Scholar 

  20. Dawara L, Singh RV (2011) Appl Organomet Chem 25:643–652

    CAS  Google Scholar 

  21. Azizur R, Hussain M, Ziaur R, Rauf A, Nasim FUH, Tahir AA, Ali S (2010) J Organomet Chem 695:1526–1532

    Article  Google Scholar 

  22. Jain M, Maanju S, Singh RV (2004) Appl Organomet Chem 18:471–479

    Article  CAS  Google Scholar 

  23. Mariam S, Hussain S, Ali S, Shahzadi S, Ramzan S, Shahid M (2018) Iran J Sci Technol Trans A Sci 42:1277–1284

    Article  Google Scholar 

  24. Rocha CS, de Morais BP, Rodrigues BL, Donnici CL, de Lima GM, Ardisson JD, Takahashi JA, Bitzer RS (2017) Appl Organomet Chem 31:e3645

    Article  Google Scholar 

  25. Banti CN, Hadjikakou SK, Sismanoglu T, Hadjiliadis N (2019) J Inorg Biochem 194:114–152

    Article  CAS  PubMed  Google Scholar 

  26. Hadjikakou SK, Hadjiliadis N (2009) Coord Chem Rev 253:235–249

    Article  CAS  Google Scholar 

  27. Annuar SNS, Kamaludin NF, Awang N, Chan KM (2021) Front Chem 9:657599

    Article  CAS  Google Scholar 

  28. Attanzio A, D’Agostino S, Busa R, Frazzitta A, Rubino S, Girasolo MA, Sabatino P, Tesoriere L (2020) Molecules 25:e3645

    Article  Google Scholar 

  29. Reiser J, McGregor E, Jones J, Enick R, Holder G (1996) Fluid Phase Equilib 117:160–167

    Article  CAS  Google Scholar 

  30. Liu J, Obando D, Liao V, Lifa T, Codd R (2011) Eur J Med Chem 46:1949–1963

    Article  CAS  PubMed  Google Scholar 

  31. Wanka L, Iqbal K, Schreiner PR (2013) Chem Rev 113:3516–3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chew CF, Guy A, Biggin PC (2008) Biophys J 95:5627–5636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang JS, Han Z, Dong XY, Luo P, Mo HL, Zang SQ (2020) Angew Chem Int Ed Engl 59:11898–11902

    Article  CAS  PubMed  Google Scholar 

  34. Takaoka A, Mankad NP, Peters JC (2011) J Am Chem Soc 133:8440–8443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agapie T, Odom AL, Cummins CC (2000) Inorg Chem 39:174–179

    Article  CAS  PubMed  Google Scholar 

  36. Delcaillau T, Bismuto A, Lian Z, Morandi B (2020) Angew Chem Int Ed Engl 59:2110–2114

    Article  CAS  PubMed  Google Scholar 

  37. Mikołajczyk M, Łyżwa P, Drabowicz J, Wieczorek M, Bujacz G (1989) Angew Chem Int Ed Engl 28:97–98

    Article  Google Scholar 

  38. Feng W, Ye K, Jiang Y, Hou R (2019) Chem Res Chin Univ 35:556–559

    Article  CAS  Google Scholar 

  39. Sainorudin MH, Sidek NM, Ismail N, Rozaini MZH, Harun NA, Sabiqah Tuan Anuar TN, Abd Rahman Azmi AA, Yusoff F (2015) J Chem Sci 2:5692

    Google Scholar 

  40. Casas JS, Castineiras A, Haiduc I, Sánchez A, Semeniuc RF, Sordo J (2007) Synth React Inorg Met-Org Chem 31:725–736

    Article  Google Scholar 

  41. Lockhart TP, Manders WF (2002) Inorg Chem 25:892–895

    Article  Google Scholar 

  42. Armstrong D, Taullaj F, Singh K, Mirabi B, Lough AJ, Fekl U (2017) Dalton Trans 46:6212–6217

    Article  CAS  PubMed  Google Scholar 

  43. Holeček J, Nádvorník M, Handlíř K, Lyčka A (1986) J Organomet Chem 315:299–308

    Article  Google Scholar 

  44. Sair U, Thakur A (2022) Mater 50:1862–1866

    CAS  Google Scholar 

  45. Varga RA, Schuermann M, Silvestru C (2001) J Organomet Chem 623:161–167

    Article  CAS  Google Scholar 

  46. Neese F (2022) Wiley Interdiscip Rev Comput Mol 12:e1606

    Google Scholar 

  47. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  48. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh HL, Singh JB, Bhanuka S (2015) Res Chem Intermed 42:997–1015

    Article  Google Scholar 

  50. Fukui K (1982) Science 218:747–754

    Article  CAS  PubMed  Google Scholar 

  51. Javed F, Sirajuddin M, Ali S, Khalid N, Tahir MN, Shah NA, Rasheed Z, Khan MR (2016) Polyhedron 104:80–90

    Article  CAS  Google Scholar 

  52. Singh HL, Singh JB, Bhanuka S (2016) Res Chem Intermed 42:997–1015

    Article  CAS  Google Scholar 

  53. Haribabu J, Garisetti V, Malekshah RE, Srividya S, Gayathri D, Bhuvanesh N, Mangalaraja RV, Echeverria C, Karvembu R (2022) J Mol Struct 1250:131782

    Article  CAS  PubMed  Google Scholar 

  54. Haribabu J, Alajrawy OI, Jeyalakshmi K, Balachandran C, Krishnan DA, Bhuvanesh N, Aoki S, Natarajan K, Karvembu R (2021) SAA 246:118963

    CAS  Google Scholar 

  55. Haribabu J, Balakrishnan N, Swaminathan S, Peter J, Gayathri D, Echeverria C, Bhuvanesh N, Karvembu R (2021) Inorg Chem Commun 134:109029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang S, Li QL, Zhang RF, Du JY, Li YX, Ma CL (2019) Polyhedron 158:15–24

    Article  CAS  Google Scholar 

  57. Nath M, Vats M, Roy P (2015) J Photochem Photobiol B: Biol 148:88–100

    Article  CAS  Google Scholar 

  58. El-Barasi NM, Miloud MM, El-ajaily MM, Mohapatra RK, Sarangi AK, Das D, Mahal A, Parhi PK, Pintilie L, Barik SR, Bitu MNA, Kudrat-E-Zahan M, Tabassum Z, Al-Resayes SI, Azam M (2020) J Saudi Chem Soc 24:492–503

    Article  CAS  Google Scholar 

  59. Azam M, Al-Resayes SI, Wabaidur SM, Altaf M, Chaurasia B, Alam M, Shukla SN, Gaur P, Albaqami NTM, Islam MS, Park S (2018) Molecules 23:813

    Article  PubMed  PubMed Central  Google Scholar 

  60. Guo Q, Zhang RF, Hua XW, Li QL, Du XM, Ru J, Ma CL (2022) New J Chem 46:4314–4324

    Article  CAS  Google Scholar 

  61. Cui ZN, Li YS, Hu DK, Tian H, Jiang JZ, Wang Y, Yan XJ (2016) Sci Rep 6:20204

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li D, Calderone R (2017) Virulence 8:159–168

    Article  CAS  PubMed  Google Scholar 

  63. SAINT Software Users Guide, version 7.0. (1999) Bruker analytical X-ray systems, Madison

  64. Sheldrick GM (2000) SADABS, version 2.03. Bruker analytical X-ray systems, Madison

  65. Sheldrick GM (2003) SHELXTL, Version 6.14. Bruker AXS, Inc., Madison

  66. Sheldrick GM (2015) Acta Crystallogr C Struct Chem 71:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  68. Neese F (2011) Wiley Interdiscip Rev Comput Mol Sci 1:73–78

    Google Scholar 

  69. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  70. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  71. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  72. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  73. Cao X, Dolg M (2001) Chem Phys 115:7348–7355

    CAS  Google Scholar 

  74. Chandrasekar S, Balachandran V, Evans HS, Latha A (2015) SAA 143:136–146

    CAS  Google Scholar 

  75. Livny O, Kaplan I, Reifen R, Polak-Charcon S, Madar Z, Schwartz B (2002) J Nutr 132:3754–3759

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (21371087) and Natural Science Foundation of Shandong Province (ZR2020MB019).

Author information

Authors and Affiliations

Authors

Contributions

ZM synthesized the complexes, conducted most of the measurements, and wrote the original draft. HS collected the crystal structures. RZ and CM designed the study and supervised the project. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Rufen Zhang or Chunlin Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 343 kb)

Supplementary file2 (PDF 6155 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Zhang, R., Shi, H. et al. New organotin(IV) complexes derived from 1-adamantanethiol: synthesis, crystal structure, DFT calculation, and in vitro antifungal activity and cytotoxicity. Transit Met Chem 48, 113–124 (2023). https://doi.org/10.1007/s11243-023-00528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00528-9

Navigation