Skip to main content
Log in

C3-symmetric tripalladium(II) complex for catalysis via geometrical coincident interaction with C3-symmetric substrate

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reaction of cis-protected [(Me4en)Pd(SO4)] with the newly designed C3-symmetric Ba3L anionic ligand produces a stable trinuclear [(Me4enPd)3L] in a cis-O,O′ mode. A characteristic structural feature is that [(Me4enPd)3L] consists of a total of 10 rings with one 6-membered central benzene ring, three 5-membered rings (PdN2C2), three 6-membered rings (PdO2C3), and three 7-membered rings. This tripalladium(II) complex shows significant multi-center catalytic efficiency in the Heck reaction with the appropriate C3-symmetric trifunctional substrate via geometrical coincident interaction between the substrate and the catalyst. A theoretical calculation of the geometrical intermolecular interaction-behavior between the catalyst ([(Me4enPd)3L]) and the substrate (1,3,5-tris(4-iodophenyl)benzene) in N,N-dimethylformamide solution was carried out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Maity R, Birenheide BS, Breher F, Sarkar B (2021) Cooperative effects in multimetallic complexes applied in catalysis. ChemCatChem 13:2337–2370. https://doi.org/10.1002/cctc.202001951

    Article  CAS  Google Scholar 

  2. Matsunaga S, Shibasaki M (2008) Multimetallic bifunctional asymmetric catalysis based on proximity effect control. Bull Chem Soc Jpn 81:60–75. https://doi.org/10.1246/bcsj.81.60

    Article  CAS  Google Scholar 

  3. Yamatsugu K, Yin L, Kamijo S, Kimura Y, Kanai M, Shibasaki M (2009) A synthesis of Tamiflu by using a barium-catalyzed asymmetric Diels–Alder-type reaction. Angew Chem Int Ed 48:1070–1076. https://doi.org/10.1002/anie.200804777

    Article  CAS  Google Scholar 

  4. Bratko I, Gomez M (2013) Polymetallic complexes linked to a single-frame ligand: cooperative effects in catalysis. Dalton Trans 42:10664–10681. https://doi.org/10.1039/C3DT50963J

    Article  CAS  PubMed  Google Scholar 

  5. Majumdar D, Singh DK, Pandey DK, Parai D, Bankura K, Mishra D (2020) DFT investigations of linear Zn3-type complex with compartmental N/O-donor Schiff base: synthesis, characterizations, crystal structure, fluorescence and molecular docking. J Mol Struct 1209:127936. https://doi.org/10.1016/j.molstruc.2020.127936

    Article  CAS  Google Scholar 

  6. Rapenne G (2005) Synthesis of technomimetic molecules: towards rotation control in single-molecular machines and motors. Org Biomol Chem 3:1165–1169. https://doi.org/10.1039/B419282F

    Article  CAS  PubMed  Google Scholar 

  7. Yi CS, Zeczycki TN, Lindeman SV (2008) Kinetic, spectroscopic, and X-ray crystallographic evidence for the cooperative mechanism of the hydration of nitriles catalyzed by a tetranuclear ruthenium-μ-oxo-μ-hydroxo complex. Organometallics 27(9):2030–2035. https://doi.org/10.1021/om800053q

    Article  CAS  Google Scholar 

  8. Maity R, Mekic A, van der Meer M, Verma A, Sarkar B (2015) Triply cyclometalated trinuclear iridium (III) and trinuclear palladium (II) complexes with a tri-mesoionic carbene ligand. Chem Commun 51:15106–15109. https://doi.org/10.1039/C5CC05506G

    Article  CAS  Google Scholar 

  9. Gonell S, Poyatos M, Peris E (2013) Triphenylene-based tris (N-heterocyclic carbene) ligand: unexpected catalytic benefits. Angew Chem 125:7147–7151. https://doi.org/10.1002/ange.201302686

    Article  Google Scholar 

  10. Ganesan M, Gambarotta S, Yap GP (2001) Highly reactive SmII macrocyclic clusters: precursors to N2 reduction. Angew Chem 113:788–791. https://doi.org/10.1002/1521-3757(20010216)113:4%3c788::AID-ANGE7880%3e3.0.CO;2-D

    Article  Google Scholar 

  11. Zhang L-M, Li H-Y, Li H-X, Young DJ, Wang Y, Lang J-P (2017) Palladium (II) chloride complexes of N,N′-disubstituted imidazole-2-thiones: syntheses, structures, and catalytic performances in Suzuki-Miyaura and Sonogashira coupling reactions. Inorg Chem 56:11230–11243. https://doi.org/10.1021/acs.inorgchem.7b01616

    Article  CAS  PubMed  Google Scholar 

  12. Homden DM, Redshaw C (2008) The use of calixarenes in metal-based catalysis. Chem Rev 108:5086–5130. https://doi.org/10.1021/cr8002196

    Article  CAS  PubMed  Google Scholar 

  13. Sartorel A, Bonchio M, Campagna S, Scandola F (2013) Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 42:2262–2280. https://doi.org/10.1039/C2CS35287G

    Article  CAS  PubMed  Google Scholar 

  14. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW (2014) Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev 43:1660–1733. https://doi.org/10.1039/C3CS60027K

    Article  CAS  PubMed  Google Scholar 

  15. Goura J, Chandrasekhar V (2015) Molecular metal phosphonates. Chem Rev 115:6854–6965. https://doi.org/10.1021/acs.chemrev.5b00107

    Article  CAS  PubMed  Google Scholar 

  16. Pérez-Temprano MH, Casares JA, Espinet P (2012) Bimetallic catalysis using transition and group 11 metals: an emerging tool for C–C coupling and other reactions. Chem Eur J 18:1864–1884. https://doi.org/10.1002/chem.201102888

    Article  CAS  PubMed  Google Scholar 

  17. Guisado-Barrios G, Hiller J, Peris E (2013) Pyracene-linked bis-imidazolylidene complexes of palladium and some catalytic benefits produced by bimetallic catalysts. Chem Eur J 19:10405–10411. https://doi.org/10.1002/chem.201300486

    Article  CAS  PubMed  Google Scholar 

  18. Hetterscheid DG, Chikkali SH, de Bruin B, Reek JN (2013) Binuclear cooperative catalysts for the hydrogenation and hydroformylation of olefins. ChemCatChem 5:2785–2793. https://doi.org/10.1002/cctc.201300092

    Article  CAS  Google Scholar 

  19. Matsubara K, Yamamoto H, Miyazaki S, Inatomi T, Nonaka K, Koga Y, Yamada Y, Veiros LF, Kirchner K (2017) Dinuclear systems in the efficient nickel-catalyzed Kumada–Tamao–Corriu cross-coupling of aryl halides. Organometallics 36:255–265. https://doi.org/10.1021/acs.organomet.6b00451

    Article  CAS  Google Scholar 

  20. Kanega R, Onishi N, Tanaka S, Kishimoto H, Himeda Y (2021) Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas-solid phase reaction. J Am Chem Soc 143:1570–1576. https://doi.org/10.1021/jacs.0c11927

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Guan J (2019) Mono-/multinuclear water oxidation catalysts. Chemsuschem 12:3209–3235. https://doi.org/10.1002/cssc.201900704

    Article  CAS  PubMed  Google Scholar 

  22. Ji G, Chen Z, Wang X-Y, Ning X-S, Xu C-J, Zhang X-M, Tao W-J, Li J-F, Gao Y, Shen Q (2021) Direct copolymerization of ethylene with protic comonomers enabled by multinuclear Ni catalysts. Nat Commun 12:1–9. https://doi.org/10.1038/s41467-021-26470-x

    Article  CAS  Google Scholar 

  23. Ma Z, Aliyeva VA, Tagiev DB, Zubkov FI, Guseinov FI, Mahmudov KT, Pombeiro AJ (2020) Multinuclear Zn (II)-arylhydrazone complexes as catalysts for cyanosilylation of aldehydes. J Organomet Chem 912:121171. https://doi.org/10.1016/j.jorganchem.2020.121171

    Article  CAS  Google Scholar 

  24. Rendón-Nava D, Álvarez-Hernández A, Mendoza-Espinosa D (2021) Synthesis and catalytic applications of multinuclear gold (I)-1, 2, 3-triazolylidene complexes. Eur J Inorg Chem 2021:840–847. https://doi.org/10.1002/ejic.202001022

    Article  CAS  Google Scholar 

  25. Mankad NP (2019) Catalysis with multinuclear complexes. In: Gebbink RJMK, Moret M-E (eds) Non-noble metal catalysis: molecular approaches and reactions. Wiley-VCH, Hoboken, pp 49–68

    Google Scholar 

  26. Tsuji J (2004) Palladium reagents and catalysts. Wiley, London

    Book  Google Scholar 

  27. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066. https://doi.org/10.1021/cr9903048

    Article  CAS  PubMed  Google Scholar 

  28. Bräse S, Meijere AD (2004) Cross-coupling of organyl halides with alkenes: the heck reaction. In: de Meijere A, Diederich F (eds) Metal-catalyzed cross-coupling reactions. Wiley, Hoboken, pp 217–315. https://doi.org/10.1002/9783527619535.ch5

    Chapter  Google Scholar 

  29. Heck RF (1968) Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J Am Chem Soc 90:5518–5526. https://doi.org/10.1021/ja01022a034

    Article  CAS  Google Scholar 

  30. Heck RF (1969) Mechanism of arylation and carbomethoxylation of olefins with organopalladium compounds. J Am Chem Soc 91:6707–6714. https://doi.org/10.1021/ja01052a029

    Article  CAS  Google Scholar 

  31. Dieck HA, Heck RF (1975) Palladium-catalyzed conjugated diene synthesis from vinylic halides and olefinic compounds. J Org Chem 40:1083–1090. https://doi.org/10.1021/jo00896a020

    Article  CAS  Google Scholar 

  32. Cho CS, Uemura S (1994) Palladium-catalyzed cross-coupling of aryl and alkenyl boronic acids with alkenes via oxidative addition of a carbon- boron bond to palladium (O). J Organomet Chem 465:85–92. https://doi.org/10.1016/0022-328X(94)87040-3

    Article  CAS  Google Scholar 

  33. Crisp GT (1998) Variations on a theme—recent developments on the mechanism of the Heck reaction and their implications for synthesis. Chem Soc Rev 27:427–436. https://doi.org/10.1039/A827427Z

    Article  CAS  Google Scholar 

  34. Diederich F, Stang PJ (2008) Metal-catalyzed cross-coupling reactions. Wiley, Hoboken

    Google Scholar 

  35. Nonius B (2013) APES, SAINT and XPREP. Bruker AXS INC, Fitchburg

    Google Scholar 

  36. Sheldrick GM (1996) SADABS, a program for empirical absorption correction of area detector data. University of Göttingen, Germany

    Google Scholar 

  37. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  38. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  39. Kim KM, Lee Y-A, Jung O-S, Sohn YS (1996) Intramolecular sulfur–oxygen interaction. Structure of dimethyl 1,3-dithiolan-2-ylidenemalonate. Bull Korean Chem Soc 17:93–95. https://doi.org/10.5012/bkcs.1996.17.1.93

    Article  CAS  Google Scholar 

  40. Kim KM, Jung O-S, Sohn YS, Jun MJ (1996) Conformational properties of potassium 1 3-dithiolan-2-ylidenemalonate. Bull Korean Chem Soc 17:473–475. https://doi.org/10.5012/bkcs.1996.17.5.473

    Article  CAS  Google Scholar 

  41. Kim KM, Lee SS, Jung O-S, Sohn YS (1996) The layered planar structure of barium 1,3-dithiepan-2-ylidenemalonate. Inorg Chem 35:3077–3078. https://doi.org/10.1021/ic960083d

    Article  CAS  PubMed  Google Scholar 

  42. Noh TH, Lee YA, Jung OS (2010) Solvent effects on coordination chemistry-stepwise synthesis and structural properties of monometallic palladium(II) complexes and bimetallic palladium(II)/platinum(II) complexes. Eur J Inorg Chem 2010:132–140. https://doi.org/10.1002/ejic.200900804

    Article  CAS  Google Scholar 

  43. Spek AL (2003) PLATON: a multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  44. Mc Cartney D, Guiry PJ (2011) The asymmetric Heck and related reactions. Chem Soc Rev 40:5122–5150. https://doi.org/10.1039/C1CS15101K

    Article  CAS  PubMed  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  46. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  47. Aryal A, Imaizumi S, Horiuchi T, Kiya H (2017) Integrated algorithm for block-permutation-based encryption with reversible data hiding. In: 2017 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, pp 203–208. https://doi.org/10.1109/APSIPA.2017.8282028

  48. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16. Gaussian, Inc., Wallingford

    Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean Government [MEST] (2021R1A2C2005105 and 2016R1A5A1009405) and BK21 FOUR Program by Pusan National University Research Grant (2020).

Author information

Authors and Affiliations

Authors

Contributions

DK contributed to investigation, conceptualization, and formal analysis. JRJ and JP contributed to investigation and methodology. OSJ contributed to funding acquisition, conceptualization, data curation, project administration, supervision, validation, and writing original draft.

Corresponding author

Correspondence to Ok-Sang Jung.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest with any other third party.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 778 kb)

Supplementary file2 (TXT 778 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Jadhav, J.R., Park, J. et al. C3-symmetric tripalladium(II) complex for catalysis via geometrical coincident interaction with C3-symmetric substrate. Transit Met Chem 48, 3–9 (2023). https://doi.org/10.1007/s11243-022-00519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00519-2

Navigation