Skip to main content
Log in

Four metal–organic architectures from a triphenyl-tricarboxylic acid: synthesis, crystal structures, and catalytic features

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Semi-flexible aromatic polycarboxylic acids are gaining impetus in crystal engineering of functional coordination polymers. This work opens up the use of a triphenyl-tricarboxylic acid, 3,5-(4'-carboxylphenyl) benozoic acid (H3cba), as a versatile and still unexplored linker for the synthesis of four new Mn(II), Ni(II), Zn(II), and Cd(II) coordination polymers, formulated as [Mn(μ3-Hcba)(bpy)]nnH2O (1), [Ni(μ-Hcba)(py)(H2O)]n (2), [Zn(μ-Hcba)(phen)(H2O)]nnH2O (3), and [Cd(μ3-Hcba)(bpy)]nnH2O (4). These compounds were prepared via a facile hydrothermal procedure using metal(II) chlorides, H3cba, and supporting N-donor ligands (2,2΄-pyridine, bpy; pyridine, py; 1,10-phenanthroline, phen) acting as crystallization mediators. Compounds 14 were fully characterized and their X-ray crystal structures were established, disclosing the metal–organic architectures that range from 1D double chains (1, 4) to 1D chains (2, 3). Thermal and catalytic properties of 14 were also investigated. In particular, catalytic potential of the obtained coordination polymers in the Knoevenagel condensation of benzaldehydes with propanedinitrile was evaluated, disclosing an excellent performance of several heterogeneous catalysts with up to 100% product yield.

Graphical abstract

Four new Mn(II), Ni(II), Zn(II), and Cd(II) 1D coordination polymers have been constructed and the structures and catalytic properties of the polymers were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3

Similar content being viewed by others

References

  1. Chakraborty G, Park I, Medishetty R, Vittal JJ (2021) Chem Rev 121:3751–3891

    Article  PubMed  CAS  Google Scholar 

  2. Gu JZ, Lu WG, Jiang L, Zhou HC, Lu TB (2007) Inorg. Chem 46:5835–5837

    Article  PubMed  CAS  Google Scholar 

  3. Zheng XD, Lu TB (2010) CrystEngComm 12:324–336

    Article  CAS  Google Scholar 

  4. Gong YN, Zhong DC, Lu TB (2016) CrystEngComm 18:2596–2606

    Article  CAS  Google Scholar 

  5. Xiao LF, Wu DJ, Wang XC, Du W, Zhang J, Li SL, Zhou HP, Wu JY, Tian YP (2017) Materials 10:1360

    Article  PubMed Central  Google Scholar 

  6. Ji X, Wu S, Song D, Chen S, Chen Q, Gao E, Xu J, Zhu X, Zhu M (2021) Appl Organomet Chem 35:e6359

    Article  CAS  Google Scholar 

  7. Alsharabasy AM, Pandit A, Farras P (2021) Adv Mater 33:2003883

    Article  CAS  Google Scholar 

  8. Cui Y, Yue Y, Qian GD, Chen BL (2012) Chem Rev 112:1126–1162

    Article  PubMed  CAS  Google Scholar 

  9. Gu Y, Zheng JJ, Otake K-I, Shivanna M, Sakaki S, Yoshino H, Ohba M, Kawaguchi S, Wang Y, Li F, Kitagawa S (2021) Angew Chem Int Ed 60:11688–11694

    Article  CAS  Google Scholar 

  10. Zhao X, Wang Y, Li DS, Bu X, Feng P (2018) Adv Mater 30:1705189

    Article  Google Scholar 

  11. Cheng F, Li Q, Duan J, Hosono N, Noro S, Krishna R, Lyu H, Kusaka S, Jin W, Kitagawa S (2017) J Mater Chem A 5:17874–17880

    Article  CAS  Google Scholar 

  12. Shi Y, Zhang T, Jiang XM, Xu G, He C, Duan C (2020) Nat Commun 11:5384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wei YS, Zhang M, Zou R, Xu Q (2020) Chem Rev 120:12089–12174

    Article  PubMed  CAS  Google Scholar 

  14. Gu JZ, Wen M, Cai Y, Shi ZF, Nesterov DS, Kirillova MV, Kirillov AM (2019) Inorg Chem 58:5875–5885

    Article  PubMed  CAS  Google Scholar 

  15. Zhao SQ, Gu JZ (2021) Chin J Inorg Chem 37:751–757

    Google Scholar 

  16. Wang YJ, Wang SY, Zhang Y, Xia B, Li QW, Wang QL, Ma Y (2020) CrystEngComm 22:5162–5169

    Article  CAS  Google Scholar 

  17. Jeong AR, Shin JW, Jeong JH, Jeoung S, Moon HR, Kang S, Min KS (2020) Inorg Chem 59:15987–15999

    Article  PubMed  CAS  Google Scholar 

  18. Zhang QL, Xiong Y, Liu JQ, Zhang TT, Liu LL, Huang YW (2018) Chem Commun 54:12025–12028

    Article  CAS  Google Scholar 

  19. Gu JZ, Cui YH, Liang XX, Wu J, Lv DY, Kirillov AM (2016) Cryst Growth Des 16:4658–4670

    Article  CAS  Google Scholar 

  20. Wei N, Zhang MY, Zhang XN, Li GM, Zhang XD, Han ZB (2014) Cryst Growth Des 14:3002–3009

    Article  CAS  Google Scholar 

  21. Zhong DC, Lu WG, Deng JH (2014) CrystEngComm 16:4633–4640

    Article  CAS  Google Scholar 

  22. Zhao SQ, Gu JZ (2022) Chin J Inorg Chem 38:161–170

    Google Scholar 

  23. Gu JZ, Gao ZQ, Tang Y (2012) Cryst Growth Des 12:3312–3323

    Article  CAS  Google Scholar 

  24. Gu JZ, Wan SM, Dou W, Kirillova MV, Kirillov AM (2021) Inorg Chem Front 8:1229–1242

    Article  CAS  Google Scholar 

  25. Fan WD, Yuan S, Wang WJ, Feng L, Liu XP, Zhang XR, Wang X, Kang ZX, Dai FN, Yuan DQ, Sun DF, Zhou HC (2020) J Am Chem Soc 142:8728–8737

    Article  PubMed  Google Scholar 

  26. Fan WD, Wang X, Liu XP, Xu B, Zhang XR, Wang WJ, Wang XK, Wang YT, Dai FN, Yuan DQ, Sun DF (2019) ACS Sustainable Chem Eng 7:2134–2140

    Article  CAS  Google Scholar 

  27. Wei LQ, Li Y, Mao LY, Chen Q, Lin N (2018) J Solid State Chem 257:58–63

    Article  CAS  Google Scholar 

  28. Qin L, Hu JS, Li YZ, Zheng HG (2011) Cryst Growth Des 11:3115–3121

    Article  CAS  Google Scholar 

  29. Wei LQ, Chen Q, Tang LL, Zhuang C, Zhu WR, Lin N (2016) Dalton Trans 45:3694–3697

    Article  PubMed  CAS  Google Scholar 

  30. Qi ZP, Yang JM, Kang YS, Sun WY (2015) Dalton Trans 44:16888–16893

    Article  PubMed  CAS  Google Scholar 

  31. Zhang XT, Chen HT, Liu GZ, Li B, Liu XZ (2018) Inorg Chem Commun 96:139–144

    Article  Google Scholar 

  32. Wei LQ, Ye BH (2019) Inorg Chem 58:4385–4393

    Article  PubMed  CAS  Google Scholar 

  33. Spek AL (2015) Acta Crystallogr Sect C Struct Chem 71:9–18

    Article  CAS  Google Scholar 

  34. Van de Sluis P, Spek AL (1990) Acta Cryst A46:194–201

    Article  Google Scholar 

  35. Kumar P, Lymperopoulou S, Loukopoulos E, Matsuda W, Kourkoumelis N, Seki S, Kostakis GE (2018) Polyhedron 150:21–27

    Article  CAS  Google Scholar 

  36. Arunachalam R, Chinnaraja E, Valkonen A, Rissanen K, Subramanian PS (2019) Appl Organometal Chem 33:e5202

    Article  CAS  Google Scholar 

  37. Pei WY, Lu BB, Yang J, Wang TQ, Ma JF (2021) Dalton Trans 50:9942–9948

    Article  PubMed  CAS  Google Scholar 

  38. Loukopoulos E, Kostakis GE (2018) J Coord Chem 71:371–410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning Project in 2021 (Project No.:202102080524).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Li or Jin-Zhong Gu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 496 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JW., Li, X., Feng, AS. et al. Four metal–organic architectures from a triphenyl-tricarboxylic acid: synthesis, crystal structures, and catalytic features. Transit Met Chem 47, 301–309 (2022). https://doi.org/10.1007/s11243-022-00513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00513-8

Navigation