Skip to main content

Asymmetrically tetra-substituted phthalocyanine derivatives: synthesis, photophysical and photochemical properties

Abstract

The syntheses of highly soluble asymmetrically substituted metal free and zinc phthalocyanine derivatives bearing three 4-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenoxy) and one 4-(2-(benzo[d]thiazol-2-yl)phenoxy) groups or bearing one 4-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenoxy) and three 4-(2-(benzo[d]thiazol-2-yl)phenoxy) groups were reported for the first time in this study. The successful synthesis of phthalocyanines was achieved through the common statistical condensation method utilizing two different phthalonitriles named as 4-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenoxy)phthalonitrile and 4-(2-(benzo[d]thiazol-2-yl)phenoxy)phthalonitrile. The asymmetrical phthalocyanines were characterized by spectroscopic methods. Moreover, the aggregation behavior, photophysical and photochemical properties of the substituted A3B type asymmetrical metal free and Zn (II) phthalocyanines were investigated in DMF. The asymmetrical Zn (II) phthalocyanine complexes produced highly singlet oxygen and appropriate fluorescence behavior in DMF suggesting that they can be suitable candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387. https://doi.org/10.1038/nrc1071

    CAS  Article  PubMed  Google Scholar 

  2. Bonnett R (2000) Chemical aspects of photodynamic therapy. CRC Press. https://doi.org/10.1201/9781482296952

    Book  Google Scholar 

  3. Brown SB, Brown EB, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508. https://doi.org/10.1016/s1470-2045(04)01529-3

    CAS  Article  PubMed  Google Scholar 

  4. Wainwright M (2008) Photodynamic therapy: the development of new photosensitisers. Anti-Cancer Agents in Med Chem 8:280–291. https://doi.org/10.2174/187152008783961888

    CAS  Article  Google Scholar 

  5. Wainwright M (2009) Photosensitisers in biomedicine. Wiley-Blackwell A John Wiley & Sons Ltd. Publication

    Book  Google Scholar 

  6. Erk P, Hengelsberg H (2003) Phthalocyanine dyes and pigments. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic Press, San Diego. https://doi.org/10.1016/B978-0-08-092393-2.50009-3

    Chapter  Google Scholar 

  7. Tshangana C, Nyokong T (2015) Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots. Spectrochim Acta A 151:397–404. https://doi.org/10.1016/j.saa.2015.06.086

    CAS  Article  Google Scholar 

  8. Ali HEA, Pişkin M, Altun S, Durmuş M, Odabaş Z (2016) Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. J Lumin 173:113–119. https://doi.org/10.1016/j.jlumin.2015.12.010

    CAS  Article  Google Scholar 

  9. Sürgün S, Arslanoğlu Y, Hamuryudan E (2014) Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dyes Pigments 100:32–40. https://doi.org/10.1016/j.dyepig.2013.07.027

    CAS  Article  Google Scholar 

  10. Uğur AL, Dinçer HA, Erdoğmuş A (2012) Synthesis, photophysical and thermal studies of symmetrical and unsymmetrical zinc phthalocyanines. Polyhedron 31:431–437. https://doi.org/10.1016/j.poly.2011.09.042

    CAS  Article  Google Scholar 

  11. Özçeşmeci İ, Burat AK, Bayır ZA (2014) Synthesis and photophysical properties of novel unsymmetrical metal-free and metallophthalocyanines. J Organomet Chem 750:125–131. https://doi.org/10.1016/j.jorganchem.2013.11.004

    CAS  Article  Google Scholar 

  12. Ruhi A, Nadeem S (2013) Biological aspects of emerging benzothiazoles: a short review. J Chem. https://doi.org/10.1155/2013/345198

    Article  Google Scholar 

  13. Harrouche K, Renard JF, Bouider N, Tullio de P, Goffin E, Lebrun P, Faury G, Pirotte B, Khelili S (2016) Synthesis, characterization and biological evaluation of benzothiazoles and tetrahydrobenzothiazoles bearing urea or thiourea moieties as vasorelaxants and inhibitors of the insulin releasing process. Eur J Med Chem 115:352–360. https://doi.org/10.1016/j.ejmech.2016.03.028

    CAS  Article  PubMed  Google Scholar 

  14. Meghdadi S, Amirnasr M, Mirhashemi A, Amiri A (2015) Synthesis, characterization and X-ray crystal structure of copper(I) complexes of the 2-(2-quinolyl)benzothiazole ligand. Electrochemical and antibacterial studies. Polyhedron 97:234–239. https://doi.org/10.1016/j.poly.2015.05.026

    CAS  Article  Google Scholar 

  15. Wang PY, Zhou L, Zhou J, Wu ZB, Xue W, Song BA, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorganic Med Chem Lett 26:1214–1217. https://doi.org/10.1016/j.bmcl.2016.01.029

    CAS  Article  Google Scholar 

  16. Nas A, Kantekin H, Koca A (2014) Novel 4-(2-(benzo[d]thiazol-2-yl)phenoxy) substituted phthalocyanine derivatives: synthesis, electrochemical and in situ spectroelectrochemical characterization. J Organomet Chem 757:62–71. https://doi.org/10.1016/j.jorganchem.2014.01.012

    CAS  Article  Google Scholar 

  17. Nas A, Kantekin H, Durmuş M, Gümrükçüoğlu N (2014) Unmetallated and metallated phthalocyanines bearing oxadiazole groups: synthesis, photophysical and photochemical studies. J Lumin 154:15–21. https://doi.org/10.1016/j.jlumin.2014.03.058

    CAS  Article  Google Scholar 

  18. Perrin DD, Armarego WLF (1989) Purification of laboratory chemicals, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  19. Nombona N, Chidawanyika W, Nyokong T (2011) Photophysical behaviour of asymmetrically substituted metal free, Mg and Zn phthalocyanines in the presence of folic acid. Polyhedron 30:654–659. https://doi.org/10.1016/j.poly.2010.11.033

    CAS  Article  Google Scholar 

  20. Özgür N, Nar I, Gül A, Hamuryudan E (2015) A new unsymmetrical phthalocyanine with a single o-carborane substituent. J Organomet Chem 781:53–58. https://doi.org/10.1016/j.jorganchem.2015.01.011

    CAS  Article  Google Scholar 

  21. Çamur M, Bulut M (2010) Phthalocyanines prepared from 4-chloro-/4-hexylthio-5-(4-phenyloxyacetic acid)phthalonitriles and functionalization of the related phthalocyanines with hydroxymethylferrocene. J Organomet Chem 695:45–52. https://doi.org/10.1016/j.jorganchem.2009.09.025

    CAS  Article  Google Scholar 

  22. Tolbin AY, Pushkarev VE, Nikitin GF, Tomilova LG (2009) Heteroligand and heteronuclear clamshell-type phthalocyanines: selective preparation, spectral properties, and synthetic application. Tetrahedron Lett 50:4848–4850. https://doi.org/10.1016/j.tetlet.2009.06.048

    CAS  Article  Google Scholar 

  23. Nyokong T (2010) Electronic spectral and electrochemical behavior of near infrared absorbing metallophthalocyanines. Struct Bond 135:45–88. https://doi.org/10.1007/978-3-642-04752-7_2

    CAS  Article  Google Scholar 

  24. Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS (2010) Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J Pharm Sci 99:2386–2398. https://doi.org/10.1002/jps.22007

    CAS  Article  PubMed  Google Scholar 

  25. Decreau R, Richard MJ, Verrando P, Chanon M, Julliard M (1999) Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes. J Photochem Photobiol B 48:48–56. https://doi.org/10.1016/s1011-1344(99)00008-1

    CAS  Article  PubMed  Google Scholar 

  26. Demirbaş Ü, Bayrak R, Pişkin M, Akçay HT, Durmuş M, Kantekin H (2013) Synthesis, photophysical and photochemical properties of novel tetra substituted metal free and metallophthalocyanines bearing triazine units. J Organomet Chem 724:225–234. https://doi.org/10.1016/j.jorganchem.2012.11.001

    CAS  Article  Google Scholar 

  27. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722. https://doi.org/10.1016/j.ccr.2006.11.011

    CAS  Article  Google Scholar 

  28. Schnurpfeil G, Sobbi AK, Spiller W, Kliesch H, Wöhrle D (1997) Photo-oxidative stability and its correlation with semi-empirical mo calculations of various tetraazaporphyrin derivatives in solution. J Porphyr Phthalocyanines 1:159–167. https://doi.org/10.1002/(sici)1099-1409(199704)1:2%3c159::aid-jpp19%3e3.0.co;2-8

    CAS  Article  Google Scholar 

  29. Bayrak R, Akçay HT, Pişkin M, Durmuş M, Değirmencioğlu İ (2012) Azine-bridged binuclear metallophthalocyanines functioning photophysical and photochemical-responsive. Dyes Pigments 95:330–337. https://doi.org/10.1016/j.dyepig.2012.05.010

    CAS  Article  Google Scholar 

  30. Chidawanyika W, Ogunsipe A, Nyokong T (2007) Syntheses and photophysics of new phthalocyanine derivatives of zinc, cadmium and mercury. New J Chem 31:377–384. https://doi.org/10.1039/b615663k

    CAS  Article  Google Scholar 

  31. Durmuş D (2012). In: Nyokong T, Ahsen V (eds) Photosensitizers in medicine, environment, and security: photochemical and photophysical characterization. Springer, New York, pp 135–141

    Google Scholar 

  32. Maree DM, Kuznetsova N, Nyokong T (2001) Silicon octaphenoxyphthalocyanines: photostability and singlet oxygen quantum yields. J Photoch Photobio A 140:117–125. https://doi.org/10.1016/s1010-6030(01)00409-9

    CAS  Article  Google Scholar 

  33. D’souza S, Moeno S, Nyokong T (2015) Effects of ZnO nanohexagons and nanorods on the fluorescence behavior of metallophthalocyanines. Polyhedron 85:476–481. https://doi.org/10.1016/j.poly.2014.09.012

    CAS  Article  Google Scholar 

  34. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V (2010) Comparative studies of photophysical and photochemical properties of solketal substituted platinum(II) and zinc(II) phthalocyanine sets. Tetrahedron 66:3248–3258. https://doi.org/10.1016/j.tet.2010.02.079

    CAS  Article  Google Scholar 

Download references

Funding

This study was supported by the Research Fund of Karadeniz Technical University, Project No: FBA-2019–7741 (Trabzon-Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiye Nas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1858 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dilber, G., Nas, A., Pişkin, M. et al. Asymmetrically tetra-substituted phthalocyanine derivatives: synthesis, photophysical and photochemical properties. Transit Met Chem 47, 157–168 (2022). https://doi.org/10.1007/s11243-022-00499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00499-3