Skip to main content

Advances in value-added aromatics by oxidation of lignin with transition metal complexes

Abstract

Lignin is the second most abundant component in biomass, considered as the most abundant and available renewable source of aromatics in Nature. The depolymerization of lignin presents a sustainable way for producing value-added aromatic chemical platforms. Among all the transformation strategies, the catalytic oxidation transformation of lignin toward the production of highly functionalized aromatic chemicals is an efficient way for high-value chemicals. Herein, we review various transition metal complexes used for the effective transformation of lignin and lignin model compounds to aromatic building blocks, which involves metal porphyrins, metal salens, vanadium complexes, methyltrioxo rhenium and other highly elaborated complexes. The corresponding mechanisms are included. Based on the catalytic systems, challenges and future directions are discussed.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Scheme 4
Scheme 5
Fig. 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 6
Scheme 12
Scheme 13

References

  1. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT et al (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    CAS  PubMed  Article  Google Scholar 

  3. Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products-strategies, challenges, and prospects. Biores Technol 271:449–461

    CAS  Article  Google Scholar 

  4. Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM et al (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233

    CAS  Article  Google Scholar 

  5. Wang M, Ma JP, Liu HF, Luo NC, Zhao ZT et al (2018) Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C–C bond. ACS Catal 8:2129–2165

    CAS  Article  Google Scholar 

  6. Alper K, Tekin K, Karagoz S, Ragauskas AJ (2020) Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energy Fuels 4:4390–4414

    CAS  Article  Google Scholar 

  7. Signoretto M, Taghavi S, Ghedini E, Menegazzo F (2019) Catalytic production of levulinic acid (LA) from actual biomass. Molecules 24:2760

    PubMed Central  Article  Google Scholar 

  8. Mobley JK (2020) Conversion of lignin to value-added chemicals via oxidative depolymerization. Chem Catal Biomass Upgrad 357–393.

  9. Vangeel T, Schutyser W, Renders T, Sels BF (2018) Perspective on lignin oxidation: advances, challenges, and future directions. Top Curr Chem 376:30

    Article  CAS  Google Scholar 

  10. Questell-Santiago YM, Galkin MV, Barta K, Luterbacher JS (2020) Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 4:311–330

    CAS  Article  Google Scholar 

  11. Das A, Koenig B (2018) Transition metal- and photoredox-catalyzed valorisation of lignin subunits. Green Chem 20:4844–4852

    CAS  Article  Google Scholar 

  12. Zhang C, Wang F (2020) Catalytic lignin depolymerization to aromatic chemicals. Acc Chem Res 53:470–484

    CAS  PubMed  Article  Google Scholar 

  13. Li CZ, Zhao XC, Wang AQ, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    CAS  PubMed  Article  Google Scholar 

  14. Yu X, Wei Z, Lu Z, Pei H, Wang H (2019) Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics. Bioresour Technol 291:121885

    CAS  PubMed  Article  Google Scholar 

  15. Hanson SK, Baker RT (2015) Knocking on wood: Base metal complexes as catalysts for selective oxidation of lignin models and extracts. Acc Chem Res 48:2037–2048

    CAS  PubMed  Article  Google Scholar 

  16. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M et al (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem-Int Ed 55:8164–8215

    CAS  Article  Google Scholar 

  17. Liu YX, Li CZ, Miao W, Tang WJ, Xue D et al (2020) Rhodium-terpyridine catalyzed redox-neutral depolymerization of lignin in water. Green Chem 22:33–38

    Article  Google Scholar 

  18. Shao Y, Xia Q, Dong L, Liu X, Han X et al (2017) Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat. Commun. 8(1):1–9

    CAS  Article  Google Scholar 

  19. Liao Y, Koelewijn S-F, Van den Bossche G, Van Aelst J, Van den Bosch S et al (2020) A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367:1385–1390

    CAS  PubMed  Article  Google Scholar 

  20. Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302:50–60

    CAS  Article  Google Scholar 

  21. Cao L, Iris K, Liu Y, Ruan X, Tsang DC et al (2018) Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Biores Technol 269:465–475

    CAS  Article  Google Scholar 

  22. Guan W, Tsang C-W, Lin CSK, Len C, Hu H et al (2020) A review on high catalytic efficiency of solid acid catalysts for lignin valorization. Bioresour Technol 298:122432

    CAS  PubMed  Article  Google Scholar 

  23. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    CAS  PubMed  Article  Google Scholar 

  24. Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sustain Energy Rev 49:871–906

    CAS  Article  Google Scholar 

  25. Tarabanko VE, Tarabanko N (2017) Catalytic oxidation of lignins into the aromatic aldehydes: general process trends and development prospects. Int J Mol Sci 18:2421

    PubMed Central  Article  CAS  Google Scholar 

  26. Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends? Green Chem 18:1839–1854

    CAS  Article  Google Scholar 

  27. Wen J-L, Xue B-L, Xu F, Sun R-C, Pinkert A (2013) Unmasking the structural features and property of lignin from bamboo. Ind Crops Prod 42:332–343

    CAS  Article  Google Scholar 

  28. Yue F, Lu F, Sun R, Ralph J (2012) Synthesis and characterization of new 5-linked pinoresinol lignin models. Chem-A Eur J 18:16402–16410

    CAS  Article  Google Scholar 

  29. Liu C, Wu S, Zhang H, Xiao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201

    CAS  Article  Google Scholar 

  30. Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50:741–748

    CAS  Article  Google Scholar 

  31. Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870

    CAS  Article  Google Scholar 

  32. Kim S, Chmely SC, Nimos MR, Bomble YJ, Foust TD et al (2011) Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J Phys Chem Lett 2:2846–2852

    CAS  Article  Google Scholar 

  33. Guadix-Montero S, Sankar M (2018) Review on catalytic cleavage of c-c inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top Catal 61:183–198

    CAS  Article  Google Scholar 

  34. Deuss PJ, Barta K (2016) From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord Chem Rev 306:510–532

    CAS  Article  Google Scholar 

  35. Hattori T, Shimada M, Umezawa T, Higuchi T, Leisola M et al (1988) New mechanism for oxygenative ring cleavage of 3, 4-dimethoxy-benzyl alcohol catalyzed by the ligninase model. Agric Biol Chem 52:879–880

    CAS  Google Scholar 

  36. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    CAS  PubMed  Article  Google Scholar 

  37. Nam W, Oh SY, Sun YJ, Kim J, Kim WK et al (2003) Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and h2o2 in protic solvents. J Org Chem 68:7903–7906

    CAS  PubMed  Article  Google Scholar 

  38. Tangestaninejad S, Habib MH, Mirkhani V (2001) Moghadam M (2001) Preparation of an insoluble polymer-supported mn (iii) porphyrin and its use as a new alkene epoxidation and alkane hydroxylation catalyst. J Chem Res 10:444–445

    Article  Google Scholar 

  39. Nam W, Kim I, Kim Y, Kim C (2001) Biomimetic alkane hydroxylation by cobalt(iii) porphyrin complex and m-chloroperbenzoic acid. Chem Commun 14:1262–1263

    Article  CAS  Google Scholar 

  40. Shimada M, Habe T, Higuchi T, Okamoto T, Panijpan B (1987) Biomimetic approach to lignin degradation. II. The mechanism of oxidative C–C bond-cleavage reactions of lignin model compounds with natural iron(III) porphyrin chloride as a heme-enzyme model system. Holzforschung 41:277–285

    CAS  Article  Google Scholar 

  41. Crestini C, Crucianelli M, Orlandi M, Saladino R (2010) Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today 156:8–22

    CAS  Article  Google Scholar 

  42. Shimada M, Habe T, Umezawa T, Higuchi T, Okamoto T (1984) The C-C bond cleavage of a lignin model compound, 1,2-diarylpropane-1,3-diol, with a heme-enzyme model catalyst tetraphenylporphyrinatoiron(iii)chloride in the presence of tert-butylhydroperoxide. Biochem Biophys Res Commun 122:1247–1252

    CAS  PubMed  Article  Google Scholar 

  43. Fang Z, Meier MS (2018) Toward the oxidative deconstruction of lignin: oxidation of beta-1 and beta-5 linkages. Org Biomol Chem 16:2330–2341

    CAS  PubMed  Article  Google Scholar 

  44. Crestini C, Saladino R, Tagliatesta P, Boschi T (1999) Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorg Med Chem 7:1897–1905

    CAS  PubMed  Article  Google Scholar 

  45. Yao SG, Meier MS, Pace RB III, Crockera M (2016) A comparison of the oxidation of lignin model compounds in conventional and ionic liquid solvents and application to the oxidation of lignin. RSC Adv 6:104742–104753

    CAS  Article  Google Scholar 

  46. Xie J, Ma G, Ouyang X, Zhao L, Qiu X (2020) Metalloporphyrin as a biomimetic catalyst for the catalytic oxidative degradation of lignin to produce aromatic monomers. Waste Biomass Valor 11:4481–4489

    CAS  Article  Google Scholar 

  47. Patil ND, Yao SG, Meier MS, Mobley JK, Crocker M (2015) Selective cleavage of the c-alpha-c-beta linkage in lignin model compounds via baeyer-villiger oxidation. Org Biomol Chem 13:3243–3254

    CAS  PubMed  Article  Google Scholar 

  48. Zucca P, Rescigno A, Rinaldi AC, Sanjust E (2014) Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: molecular mechanisms and application perspectives. J Mol Catal A-Chem 388:2–34

    Article  CAS  Google Scholar 

  49. Yao SG, Mobley JK, Ralph J, Crocker M, Parkin S et al (2018) Mechanochemical treatment facilitates two-step oxidative depolymerization of kraft lignin. ACS Sustain Chem Eng 6:5990–5998

    CAS  Article  Google Scholar 

  50. Crestini C, Pastorini A, Tagliatesta P (2004) Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J Mol Catal A-Chem 208:195–202

    CAS  Article  Google Scholar 

  51. Ghiaci M, Molaie F, Sedaghat ME, Dorostkar N (2010) Metalloporphyrin covalently bound to silica. Preparation, characterization and catalytic activity in oxidation of ethyl benzene. Catal Commun 11:694–699

    CAS  Article  Google Scholar 

  52. Crestini C, Pastorini A, Tagliatesta P (2004) The immobilized porphyrin-mediator system mn(tmepyp)/clay/hbt (clay-pms): a lignin peroxidase biomimetic catalyst in the oxidation of lignin and lignin model compounds. Eur J Inorg Chem 2004:4477–4483

    Article  CAS  Google Scholar 

  53. Mobley JK (2019) Conversion of lignin to value dded chemicals via oxidative depolymerization. Chem Catal Biomass Upgrad 28:357–393

    Google Scholar 

  54. Cui F, Dolphin D (1995) Metallophthalocyanines as possible lignin peroxidase models. Bioorg Med Chem 3:471–477

    CAS  PubMed  Article  Google Scholar 

  55. Robinson MJ, Wright LJ, Suckling ID (2000) Fe(tspc)-catalysed benzylic oxidation and subsequent dealkylation of a non-phenolic lignin model. J Wood Chem Technol 20:357–373

    CAS  Article  Google Scholar 

  56. Barbat A, Gloaguen V, Sol V, Krausz P (2010) Aqueous extraction of glucuronoxylans from chestnut wood: new strategy for lignin oxidation using phthalocyanine or porphyrin/H2O2 system. Biores Technol 101:6538–6544

    CAS  Article  Google Scholar 

  57. Zhu W, Ford WT (1993) Oxidation of lignin model compounds in water with dioxygen and hydrogen peroxide catalysed by metallophthalocyanines. J Mol Catal 78:367–378

    CAS  Article  Google Scholar 

  58. Cozzi PG (2004) Metal-salen schiff base complexes in catalysis: Practical aspects. Chem Soc Rev 33:410–421

    CAS  PubMed  Article  Google Scholar 

  59. Linde C, Anderlund MF, Akermark B (2005) The effect of phenolates in the (salen)Mn-catalyzed epoxidation reactions. Tetrahedron Lett 46:5597–5600

    CAS  Article  Google Scholar 

  60. Zhou G, Zhang Z, Feng X, Dang B, Li X et al (2012) Ionic liquids promoted the C-H oxidation of alcohols to carbonyl compounds using a new polysiloxane-supported (salen)chromium(III) catalyst. Catal Commun 25:69–73

    CAS  Article  Google Scholar 

  61. Shaw S, White JD (2019) Asymmetric catalysis using chiral salen-metal complexes: recent advances. Chem Rev 119:9381–9426

    CAS  PubMed  Article  Google Scholar 

  62. Haikarainen A, Sipila J, Pietikainen P, Pajunen A, Mutikainen I (2001) Synthesis and characterization of bulky salen-type complexes of Co, Cu, Fe, Mn and Ni with amphiphilic solubility properties. J Chem Soc-Dalton Trans 2001:991–995

    Article  Google Scholar 

  63. Ambrose K, Hurisso BB, Singer RD (2013) Recyclable ionic liquid tagged co(salen) catalysts for the oxidation of lignin model compounds. Can J Chem 91:1258–1261

    CAS  Article  Google Scholar 

  64. Springer SD, He J, Chui M, Little RD, Foston M et al (2016) Peroxidative oxidation of lignin and a lignin model compound by a manganese salen derivative. ACS Sustain Chem Eng 4:3212–3219

    CAS  Article  Google Scholar 

  65. Zhou X-F, Tang K (2016) Combining laccase with Cu(salen) catalysts for oxidation of kraft lignin. Drewno 59:35–47

    Google Scholar 

  66. Zhou X-F (2020) Catalytic conversion of lignin by immobilized Cu H-4 salen and H-2 salen complexes under hydrothermal conditions. Drewno 63:81–92

    Google Scholar 

  67. Cooper CJ, Alam S, Nziko VdPN, Johnston RC, Ivanov AS et al (2020) Co(salen)-catalyzed oxidation of lignin models to form benzoquinones and benzaldehydes: a computational and experimental study. ACS Sustain Chem Eng 8:7225–7234

    CAS  Article  Google Scholar 

  68. Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-schiff base complex-catalyzed oxidation of parasubstituted phenolics - preparation of benzoquinones. J Org Chem 60:2398–2404

    CAS  Article  Google Scholar 

  69. Zuleta EC, Goenaga GA, Zawodzinski TA, Elder T, Bozell JJ (2020) Deactivation of Co-schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones. Catal Sci Technol 10:403–413

    CAS  Article  Google Scholar 

  70. Sippola VO, Krause AOI (2003) Oxidation activity and stability of homogeneous cobalt-sulphosalen catalyst - studies with a phenolic and a non-phenolic lignin model compound in aqueous alkaline medium. J Mol Catal A-Chem 194:89–97

    CAS  Article  Google Scholar 

  71. Biannic B, Bozell JJ (2013) Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org Lett 15:2730–2733

    CAS  PubMed  Article  Google Scholar 

  72. Cedeno D, Bozell JJ (2012) Catalytic oxidation of para-substituted phenols with cobalt-schiff base complexes/O2-selective conversion of syringyl and guaiacyl lignin models to benzoquinones. Tetrahedron Lett 53:2380–2383

    CAS  Article  Google Scholar 

  73. Elder T, Bozell JJ, Cedeno D (2013) The effect of axial ligand on the oxidation of syringyl alcohol by Co(salen) adducts. Phys Chem Chem Phys 15:7328–7337

    CAS  PubMed  Article  Google Scholar 

  74. Badamali SK, Luque R, Clark JH, Breeden SW (2011) Co(salen)/SBA-15 catalysed oxidation of a beta-O-4 phenolic dimer under microwave irradiation. Catal Commun 12:993–995

    CAS  Article  Google Scholar 

  75. Zhou X-F, Tang K (2016) Zeolite-encapsulated Co(II) H-4 salen and H-2 salen complexes: Pulp bleaching catalysts with enhanced bleachability. Cellul Chem Technol 50:1047–1053

    CAS  Google Scholar 

  76. Zhou X-F, Lu X-J (2016) Co(salen) supported on graphene oxide for oxidation of lignin. J Appl Polym Sci 133.

  77. Zhou X-F (2015) Catalytic oxidation and conversion of kraft lignin into phenolic products using zeolite-encapsulated Cu(II) H-4 salen and H-2 salen complexes. Environ Prog Sustainable Energy 34:1120–1128

    CAS  Article  Google Scholar 

  78. Zhou X-F (2014) Selective oxidation of kraft lignin over zeolite-encapsulated Co(II) H-4 salen and H-2 salen complexes. J Appl Polym Sci 131:40809

    Article  CAS  Google Scholar 

  79. Gao T-T, Zhou X-F, Zhu Z-L (2015) Catalytic converison of kraft lignin using paper-like Co(salen) as an effective catalyst. Drewno 58:79–90

    Google Scholar 

  80. Zhang N, Zhang Y, Xu Y-J (2012) Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale 4:5792–5813

    CAS  PubMed  Article  Google Scholar 

  81. Badamali SK, Luque R, Clark JH, Breeden SW (2009) Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15. Catal Commun 10:1010–1013

    CAS  Article  Google Scholar 

  82. Zhou X-F (2014) Application of zeolite-encapsulated Cu(II) H-4 salen derived from H-2 salen in oxidative delignification of pulp. RSC Adv 4:28029–28035

    CAS  Article  Google Scholar 

  83. Zhou X-F, Liu J (2012) Co(salen)-catalysed oxidation of synthetic lignin-like polymer: Co(salen) effects. Hemijska Industrija 66:685–692

    Article  Google Scholar 

  84. Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP et al (2019) Catalytic applications of vanadium: a mechanistic perspective. Chem Rev 119:2128–2191

    CAS  PubMed  Article  Google Scholar 

  85. Amadio E, Di Lorenzo R, Zonta C, Licini G (2015) Vanadium catalyzed aerobic carbon-carbon cleavage. Coord Chem Rev 301:147–162

    Article  CAS  Google Scholar 

  86. Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed c-o bond cleavage: application to degradation of lignin model compounds. Angew Chem-Int Ed 49:3791–3794

    CAS  Article  Google Scholar 

  87. Chan JMW, Bauer S, Sorek H, Sreekumar S, Wang K et al (2013) Studies on the vanadium-catalyzed nonoxidative depolymerization of miscanthus giganteus-derived lignin. ACS Catal 3:1369–1377

    CAS  Article  Google Scholar 

  88. Sedai B, Diaz-Urrutia C, Baker RT, Wu R, Silks LAP et al (2013) Aerobic oxidation of beta-1 lignin model compounds with copper and oxovanadium catalysts. ACS Catal 3:3111–3122

    CAS  Article  Google Scholar 

  89. Sedai B, Diaz-Urrutia C, Baker RT, Wu R, Silks LAP et al (2011) Comparison of copper and vanadium homogeneous catalysts for aerobic oxidation of lignin models. ACS Catal 1:794–804

    CAS  Article  Google Scholar 

  90. Diaz-Urrutia C, Hurisso BB, Gauthier PMP, Sedai B, Singer RD et al (2016) Catalytic aerobic oxidation of lignin-derived bio-oils using oxovanadium and copper complex catalysts and ionic liquids. J Mol Catal A-Chem 423:414–422

    CAS  Article  Google Scholar 

  91. Zhang G, Scott BL, Wu R, Silks LAP, Hanson SK (2012) Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands. Inorg Chem 51:7354–7361

    CAS  PubMed  Article  Google Scholar 

  92. Hanson SK, Wu R, Silks LAP (2012) C-C or C-O bond cleavage in a phenolic lignin model compound: Selectivity depends on vanadium catalyst. Angew Chem-Int Ed 51:3410–3413

    CAS  Article  Google Scholar 

  93. Jiang Y-Y, Yan L, Yu H-Z, Zhang Q, Fu Y (2016) Mechanism of vanadium-catalyzed selective C–O and C–C cleavage of lignin model compound. ACS Catal 6:4399–4410

    CAS  Article  Google Scholar 

  94. Parker HJ, Chuck CJ, Woodman T, Jones MD (2016) Degradation of beta-O-4 model lignin species by vanadium schiff-base catalysts: Influence of catalyst structure and reaction conditions on activity and selectivity. Catal Today 269:40–47

    CAS  Article  Google Scholar 

  95. Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL (2010) Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg Chem 49:5611–5618

    CAS  PubMed  Article  Google Scholar 

  96. Ma Y, Du Z, Liu J, Xia F, Xu J (2015) Selective oxidative C-C bond cleavage of a lignin model compound in the presence of acetic acid with a vanadium catalyst. Green Chem 17:4968–4973

    CAS  Article  Google Scholar 

  97. Tsai Y-T, Chen C-Y, Hsieh Y-J, Tsai M-L (2019) Selective C-alpha alcohol oxidation of lignin substrates featuring a beta-O-4 linkage by a dinuclear oxovanadium catalyst via two-electron redox processes. Eur J Inorg Chem 2019:4637–4646

    CAS  Article  Google Scholar 

  98. Dyckhoff F, Li S, Reich RM, Hofmann BJ, Herdtweck E et al (2018) Synthesis, characterization and application of organorhenium(VII) trioxides in metathesis reactions and epoxidation catalysis. Dalton Trans 47:9755–9764

    CAS  PubMed  Article  Google Scholar 

  99. Santos AM, Romao CC, Kuhn FE (2003) (eta(2)-alkyne)methyl(dioxo)rhenium complexes as aldehyde-olefination catalysts. J Am Chem Soc 125:2414–2415

    CAS  PubMed  Article  Google Scholar 

  100. Korstanje TJ, de Waard EF, Jastrzebski JTBH, Gebbink RJMK (2012) Rhenium-catalyzed dehydration of nonbenzylic and terpene alcohols to olefins. ACS Catal 2:2173–2181

    CAS  Article  Google Scholar 

  101. Crestini C, Caponi MC, Argyropoulos DS, Saladino R (2006) Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorg Med Chem 14:5292–5302

    CAS  PubMed  Article  Google Scholar 

  102. Herrmann WA, Fischer RW (1995) Multiple bonds between main-group elements and transition metals. 136. “Polymerization” of an organometal oxide: the unusual behavior of methyltrioxorhenium(VII) in water. J Am Chem Soc 117:3223–3230

    CAS  PubMed  Article  Google Scholar 

  103. Yin G, Busch DH (2009) Mechanistic details to facilitate applications of an exceptional catalyst, methyltrioxorhenium: encouraging results from oxygen-18 isotopic probes. Catal Lett 130:52–55

    CAS  Article  Google Scholar 

  104. Crestini C, Pro P, Neri V, Saladino R (2005) Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. Bioorg Med Chem 13:2569–2578

    CAS  PubMed  Article  Google Scholar 

  105. Adam W, Herrmann WA, Saha-Molller CR, Shimizu M (1995) Oxidation of methoxybenzenes to p-benzoquinones catalyzed by methyltrioxorhenium(VII). J Mol Catal A: Chem 97:15–20

    CAS  Article  Google Scholar 

  106. Harms RG, Markovits IIE, Drees M, Herrmann WA, Cokoja M et al (2014) Cleavage of C–O bonds in lignin model compounds catalyzed by methyldioxorhenium in homogeneous phase. Chemsuschem 7:429–434

    CAS  PubMed  Article  Google Scholar 

  107. Zhang B, Qi Z, Li X, Ji J, Zhang L et al (2019) Cleavage of lignin C–O bonds over a heterogeneous rhenium catalyst through hydrogen transfer reactions. Green Chem 21:5556–5564

    CAS  Article  Google Scholar 

  108. Zhang B, Qi Z, Li X, Ji J, Luo W et al (2019) ReOx/AC-catalyzed cleavage of C–O bonds in lignin model compounds and alkaline lignins. ACS Sustain Chem Eng 7:208–215

    CAS  Article  Google Scholar 

  109. Qi ZJ, Zhang B, Ji JW, Li XX, Dai T et al (2018) Selective cleavage of C–O bonds in lignin catalyzed by rhenium(VII) oxide (Re2O7). ChemPlusChem 83:500–505

    CAS  PubMed  Article  Google Scholar 

  110. Alves V, Capanema E, Chen CL, Gratzl J (2003) Comparative studies on oxidation of lignin model compounds with hydrogen peroxide using Mn(IV)–Me3TACN and Mn(IV)-Me4DTNE as catalyst. J Mol Catal A: Chem 206:37–51

    CAS  Article  Google Scholar 

  111. Chen CL, Capanema EA, Gracz HS (2003) Reaction mechanisms in delignification of pine kraft-aq pulp with hydrogen peroxide using mn(iv)-me4dtne as catalyst. J Agric Food Chem 51:1932–1941

    CAS  PubMed  Article  Google Scholar 

  112. Napoly F, Jean-Gerard L, Goux-Henry C, Draye M, Andrioletti B (2014) Fe(taml)Li/(diacetoxyiodo)benzene-mediated oxidation of alcohols: evidence for mild and selective C–O and C–C oxidative cleavage in lignin model transformations. Eur J Org Chem 2014:781–787

    CAS  Article  Google Scholar 

  113. Zhang Z, Khrouz L, Yin G, Andrioletti B (2019) Efficient oxidation of benzylic and aliphatic alcohols using a bioinspired cross-bridged cyclam manganese complex with H2O2. Eur J Org Chem 2019:323–327

    CAS  Article  Google Scholar 

  114. Collins TJ, Ryabov AD (2017) Targeting of high-valent iron-taml activators at hydrocarbons and beyond. Chem Rev 117:9140–9162

    CAS  PubMed  Article  Google Scholar 

  115. Sippola VO, Krause AOI (2005) Bis(o-phenanthroline)copper-catalysed oxidation of lignin model compounds for oxygen bleaching of pulp. Catal Today 100:237–242

    CAS  Article  Google Scholar 

  116. Salonen HEP, Mecke CPA, Karjomaa MI, Joensuu PM, Koskinen AMP (2018) Copper catalyzed alcohol oxidation and cleavage of beta-O-4 lignin model systems: from development to mechanistic examination. ChemistrySelect 3:12446–12454

    CAS  Article  Google Scholar 

  117. Wang M, Lu J, Li L, Li H, Liu H et al (2017) Oxidative C(OH)–C bond cleavage of secondary alcohols to acids over a copper catalyst with molecular oxygen as the oxidant. J Catal 348:160–167

    CAS  Article  Google Scholar 

  118. Zhou ZZ, Liu M, Li C-J (2017) Selective copper-N-heterocyclic carbene (copper-NHC)-catalyzed aerobic cleavage of beta-1 lignin models to aldehydes. ACS Catal 7:3344–3348

    CAS  Article  Google Scholar 

  119. Kusumoto S, Kishino M, Nozaki K (2020) Cleavage of C–C and C–O bonds in beta-O-4 linkage of lignin model compound by cyclopentadienone group 8 and 9 metal complexes. Chem Lett 49:477–480

    CAS  Article  Google Scholar 

  120. Barroso S, Blay G, Fernandez I, Pedro JR, Ruiz-Garcia R et al (2006) Chemistry and reactivity of mononuclear manganese oxamate complexes: Oxidative carbon-carbon bond cleavage of vic-diols by dioxygen and aldehydes catalyzed by a trans-dipyridine manganese(III) complex with a tetradentate o-phenylenedioxamate ligand. J Mol Catal A: Chem 243:214–220

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Shuangchuang Project and Lvyangjinfeng Talent Program of Yangzhou.

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Conceptualization, Writing the original draft. GY: Revised the manuscript. BA: Revised the manuscript.

Corresponding authors

Correspondence to Zhan Zhang, Guochuan Yin or Bruno Andrioletti.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yin, G. & Andrioletti, B. Advances in value-added aromatics by oxidation of lignin with transition metal complexes. Transit Met Chem 47, 189–211 (2022). https://doi.org/10.1007/s11243-022-00498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00498-4