Skip to main content
Log in

Construction of poly-iodine aromatic carboxylate Mn/Co frameworks and iodine adsorption behavior

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two poly-iodine aromatic tricarboxylate complexes: {(Me2NH2)[Mn(TIBTC)(2, 2'-bipy)(H2O)]}n (1) and {(Me2NH2)[Co(TIBTC)(DMA)]}n (2) (DMA = N, N-dimethylacetamide), were designed and synthesized by the hydrothermal synthetic methods (TIBTC = 2, 4, 6-triiodo-1, 3, 5-benzenetricarboxylic acid). Complexes were characterized by microanalysis. The crystal structures of complexes 1 and 2 were determined by X-ray single-crystal diffraction. Complex 1 is a 3D network supramolecular network structure connected by the hydrogen bonds, and complex 2 is a 3D network structure. To explore their functional properties, we first investigated the adsorption capacity of complexes 1 and 2 for iodine capture in cyclohexane solution. The maximum adsorption capacity of complex 2 is 125 mg/g. Meanwhile, the adsorption kinetic curves fitting showed that complexes 1 and 2 all conformed to the pseudo-second-order curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watanabe Y, Ikoma T, Yamada H, Suetsugu Y, Komatsu Y, Stevens GW, Moriyoshi Y, Tanaka J (2009) ACS Appl Mater Interfaces 1:1579–1584. https://doi.org/10.1021/am900251m

    Article  CAS  PubMed  Google Scholar 

  2. Mineo H, Gotoh M, Iizuka M, Fujisaki S, Hagiya H, Uchiyama G (2003) Sep Sci Technol 38:1981–2001. https://doi.org/10.1081/SS-120020130

    Article  CAS  Google Scholar 

  3. Soelberg NR, Garn TG, Greenhalgh MR, Law JD, Jubin R, Strachan DM, Thallapally PK (2013) Sci Technol Nucl Install 2013:1–12. https://doi.org/10.1155/2013/702496

    Article  CAS  Google Scholar 

  4. Nan Y, Tavlarides LL, DePaoli DW (2017) AIChE J 63:1024–1035. https://doi.org/10.1002/aic.15432

    Article  CAS  Google Scholar 

  5. Hidaka A, Yokoyama H (2017) J Nucl Sci Technol 54:819–829. https://doi.org/10.1080/00223131.2017.1323691

    Article  CAS  Google Scholar 

  6. Sun J, Yang D, Sun C, Liu L, Yang S, Jia Y, Cai R, Yao X (2014) Sci Rep 4:7313–7315. https://doi.org/10.1038/srep07313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mu W, Yu Q, Li X, Wei H, Jian Y (2016) RSC Adv 6:81719–81725. https://doi.org/10.1039/c6ra18091d

    Article  CAS  Google Scholar 

  8. Woo TH (2013) Ann Nucl Energy 53:197–201. https://doi.org/10.1016/j.anucene.2012.09.003

    Article  CAS  Google Scholar 

  9. Wang J, Fan D, Jiang C, Lu L (2019) Nano Today 6:1517–1525. https://doi.org/10.1016/j.nantod.2020.101034

    Article  CAS  Google Scholar 

  10. Assaad T, Assfour B (2017) J Nucl Mater 493:6–11. https://doi.org/10.1016/j.jnucmat.2017.05.036

    Article  CAS  Google Scholar 

  11. Wang J, Li Z, Wang Y, Wei C, Ai K, Lu L (2019) Mater Horiz 6:1517–1525. https://doi.org/10.1039/C9MH00460B

    Article  CAS  Google Scholar 

  12. Wang P, Qing X, Li ZP, Jiang WM, Jiang QH, Jiang DL (2018) Adv Mater 30:1801991–1801997. https://doi.org/10.1002/adma.201801991

    Article  CAS  Google Scholar 

  13. Leloire M, Dhainaut J, Devaux P, Leroyc O, Desjonqueres H, Poirier S, Nerisson P, Cantrel L, Royer S, Loiseau T, Volkringer C (2021) J Hazard Mater 416:125890–125898. https://doi.org/10.1016/j.jhazmat.2021.125890

    Article  CAS  PubMed  Google Scholar 

  14. Khetib Y, Larkeche O, Meniai AH, Radwan A (2013) Chem Eng Technol 36:1924–1934. https://doi.org/10.1002/ceat.201300058

    Article  CAS  Google Scholar 

  15. Yang S, Peng L, Bulut S, Queen WL (2019) Chem-A European J 25:2161–2178. https://doi.org/10.1002/chem.201803157

    Article  CAS  Google Scholar 

  16. Kurmoo M (2009) Chem Soc Rev 38:1353–1379. https://doi.org/10.1039/b804757j

    Article  CAS  PubMed  Google Scholar 

  17. Lorusso G, Sharples JW, Palacios E, Roubeau O, Brechin EK, Sessoli R, Rossin A, Tuna F, McInnes EJL, Collison D, Evangelisti M (2013) Adv Mater 25:4653–4656. https://doi.org/10.1002/adma.201301997

    Article  CAS  PubMed  Google Scholar 

  18. Mandal A, Ganguly S, Mukherjee S, Das D (2019) Dalton Trans 48:13869–13879. https://doi.org/10.1039/c9dt02394a

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, Ge Y, Wang Y, Chen X, Li F, Xuan H, Li X (2017) Environ Technol 39:1937–1948. https://doi.org/10.1080/09593330.2017.1344732

    Article  CAS  PubMed  Google Scholar 

  20. Cheng P, Wang C, Kaneti YV, Eguchi M, Lin J, Yamauchi Y, Na J (2020) Langmuir 36:4231–4249. https://doi.org/10.1021/acs.langmuir.0c00236

    Article  CAS  PubMed  Google Scholar 

  21. Semino R, Ramsahye NA, Ghoufi A, Maurin G (2017) Microporous Mesoporous Mater 254:184–191. https://doi.org/10.1016/j.micromeso.2017.02.031

    Article  CAS  Google Scholar 

  22. Lu WG, Wei ZW, Gu ZY, Liu TF, Park J, Tian J, Zhang MW, Zhang Q, Thomas G, Boscha M, Zhou HC (2014) Chem Soc Rev 43:5561–5593. https://doi.org/10.1039/c4cs00003j

    Article  CAS  PubMed  Google Scholar 

  23. Furukawaa KE, O’M K, O’M Y (2013) Science 341: 1230444-12 DOI: 10.1126/science.1230444

  24. Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B (2016) Adv Mater 28:8819–8860. https://doi.org/10.1002/adma.201601133

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Wen HM, Zhou W, Chen B (2014) The Journal of Physical Chemistry Letters 5:3468–3479. https://doi.org/10.1021/jz501586e

    Article  CAS  PubMed  Google Scholar 

  26. Zhu L, Liu XQ, Jiang HL, Sun LB (2017) Chem Rev 117:8129–8176. https://doi.org/10.1021/acs.chemrev.7b00091

    Article  CAS  PubMed  Google Scholar 

  27. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Chem Soc Rev 46:6804–6849. https://doi.org/10.1002/chin.201546250

    Article  Google Scholar 

  28. Wan LJ, Zhang CS, Xing YH, Li Z, Xing N, Wan LY, Shan H (2012) Inorg Chem 51:6517–6528. https://doi.org/10.1021/ic202678s

    Article  CAS  PubMed  Google Scholar 

  29. Himo F, Demko ZP, Noodleman L, Sharpless KB (2002) J Am Chem Soc 124:12210–12216. https://doi.org/10.1021/ja0206644

    Article  CAS  PubMed  Google Scholar 

  30. Niu JJ, Chen C, Ye CW, Zhang X, Yao YG, Chen LF (2013) Inorg Chem Commun 27:149–151. https://doi.org/10.1016/j.inoche.2012.10.009

    Article  CAS  Google Scholar 

  31. Liu SJ, Cao C, Yang F, Yu MH, Yao SL, Zheng TF, He WW, Zhao HX, Hu TL, Bu XH (2016) Cryst Growth Des 16:6776–6780. https://doi.org/10.1021/acs.cgd.6b00776

    Article  CAS  Google Scholar 

  32. Wang FK, Yang SY, Dong HZ (2020) J Mol Struct 1227:129540–129548. https://doi.org/10.1016/j.molstruc.2020.129540

    Article  CAS  Google Scholar 

  33. Wang Y, Xing SH, Zhang X, Liu CH, Li B, Bai FY, Xing YH, Sun LX (2019) Appl Organomet Chem 33:e4898-4911. https://doi.org/10.1002/aoc.4898

    Article  CAS  Google Scholar 

  34. Sun Y, Bai FY, Wang XM, Wang Y, Sun LX, Xing YH (2019) J Coord Chem 72:1560–1578. https://doi.org/10.1080/00958972.2019.1599870

    Article  CAS  Google Scholar 

  35. Liu CH, Guan QL, Yang XD, Bai FY, Sun LX, Xing YH (2020) Inorg Chem 59:8081–8098. https://doi.org/10.1021/acs.inorgchem.0c00391

    Article  CAS  PubMed  Google Scholar 

  36. Hussain S, Malik AH, Afroz MA, Iyer PK (2015) ChemComm 51:7207–7210. https://doi.org/10.1039/c5cc02194d

    Article  CAS  Google Scholar 

  37. Sheldrick GM (2008) Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  38. Spek AL (2003) J Appl Crystallogr 36:7–13. https://doi.org/10.1107/s0021889802022112

    Article  CAS  Google Scholar 

  39. Wang C, Zhang N, Hou CY, Han XX, Liu CH, Xing YH, Bai FY, Sun LX (2020) Transition Met Chem 45:423–433. https://doi.org/10.1007/s11243-020-00394-9

    Article  CAS  Google Scholar 

  40. Etter MC (1990) Acc Chem Res 23:120–126. https://doi.org/10.1002/chin.199030333

    Article  CAS  Google Scholar 

  41. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) ChemInform 26:47–318. https://doi.org/10.1002/chin.199547318

    Article  Google Scholar 

  42. Etter MC, Macdonald JC, Bernstein J (1990) Acta Crystallogr B 46:256–262. https://doi.org/10.1107/s0108768189012929

    Article  PubMed  Google Scholar 

  43. Xin Y, Zhang N, Han XX, Li B, Sun Y, Sun LX, Bai FY, Xing YH (2020) J Mol Struct 1205:127656–127659. https://doi.org/10.1016/j.molstruc.2019.127656

    Article  CAS  Google Scholar 

  44. Tang YF, Hu T, Zeng YD, Zhou Q, Peng YZ (2015) RSC Adv 5:3757–3766. https://doi.org/10.1039/C4RA12229A

    Article  CAS  Google Scholar 

  45. Zhang N, Xing YH, Bai FY (2019) Inorg Chem 58:6866–6876. https://doi.org/10.1021/acs.inorgchem.9b00317

    Article  CAS  PubMed  Google Scholar 

  46. DeBoer G, Burnett JW, Young MA (1996) Chem Phys Lett 259:368–374. https://doi.org/10.1016/0009-2614(96)00808-1

    Article  CAS  Google Scholar 

  47. Liao Y, Weber J, Mills BM, Ren Z, Faul CFJ (2016) Macromolecules 49:6322–6333. https://doi.org/10.1021/acs.macromol.6b00901

    Article  CAS  Google Scholar 

  48. Tang S, Xia D, Yao Y, Chen T, Sun J, Yin Y, Shen W, Peng Y (2019) J Colloid Interface Sci 554:682–691. https://doi.org/10.1016/j.jcis.2019.07.041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants of the National Natural Science Foundation of China (No. 21571091) and Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, People’s Republic of China (Project No. 191001-K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ying Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, HQ., Liu, CH., Xin, Y. et al. Construction of poly-iodine aromatic carboxylate Mn/Co frameworks and iodine adsorption behavior. Transit Met Chem 46, 633–644 (2021). https://doi.org/10.1007/s11243-021-00481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00481-5

Navigation