Skip to main content
Log in

Luminescent heteroleptic copper(I) complexes with polydentate benzotriazolyl-based ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Bis(benzotriazol-1-yl)phenylmethane CHPh(btz)2 and tris(benzotriazol-1-yl)methane CH(btz)3 were used as N-donor ligands to prepare luminescent heteroleptic copper(I) complexes. [Cu{CHPh(btz)2}(PPh3)2][BF4] and [Cu{CHPh(btz)2}(DPEphos)][BF4] (DPEphos = bis[(2-diphenylphosphino)phenyl] ether) were obtained from the corresponding borohydride complexes [Cu(BH4)(PPh3)2] and [Cu(BH4)(DPEphos)] and tetrafluoroboric acid. [Cu{CH(btz)3}(PPh3)][BF4] and [Cu{CH(btz)3}(PiPr3)][BF4] were prepared from the acetonitrile complex [Cu(NCCH3)4][BF4]. The complexes exhibited bright yellow or orange emissions upon excitation with near-UV and violet light. The photoluminescent properties were attributed to metal-to-ligand charge transfer transitions on the basis of experimental data and DFT calculations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wenger OS (2018) Photoactive complexes with earth-abundant metals. J Am Chem Soc 140:13522–13533. https://doi.org/10.1021/jacs.8b08822

    Article  CAS  PubMed  Google Scholar 

  2. Zhang QC, Xiao H, Zhang X, Xu LJ, Chen ZN (2019) Luminescent oligonuclear metal complexes and the use in organic light-emitting diodes. Coord Chem Rev 378:121–133. https://doi.org/10.1016/j.ccr.2018.01.017

    Article  CAS  Google Scholar 

  3. Costa RD, Ortí E, Bolink HJ, Monti F, Accorsi G, Armaroli N (2012) Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew Chem Int Ed 51:8178–8211. https://doi.org/10.1002/anie.201201471

    Article  CAS  Google Scholar 

  4. Bizzarri C, Spuling E, Knoll DM, Volz D, Bräse S (2018) Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord Chem Rev 373:49–82. https://doi.org/10.1016/j.ccr.2017.09.011

    Article  CAS  Google Scholar 

  5. Cariati E, Lucenti E, Botta C, Giovanella U, Marinotto D, Righetto S (2016) Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties. Coord Chem Rev 306:566–614. https://doi.org/10.1016/j.ccr.2015.03.004

    Article  CAS  Google Scholar 

  6. Armaroli N, Accorsi G, Cardinali F, Listorti A (2007) Photochemistry and photophysics of coordination compounds: copper. Top Curr Chem 280:69–115. https://doi.org/10.1007/128_2007_128

    Article  CAS  Google Scholar 

  7. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W (2014) Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv Mater 26:7931–7958. https://doi.org/10.1002/adma.201402532

    Article  CAS  Google Scholar 

  8. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord Chem Rev 255:2622–2652. https://doi.org/10.1016/j.ccr.2011.01.042

    Article  CAS  Google Scholar 

  9. Yersin H (2018) Highly efficient OLEDs: materials based on thermally activated delayed fluorescence. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. McMillin DR, Buckner MT, Ahn BT (1977) A light-induced redox reaction of bis(2,9-dimethyl-1,10-phenanthroline)copper(I). Inorg Chem 16:943–945. https://doi.org/10.1021/ic50170a046

    Article  CAS  Google Scholar 

  11. Buckner MT, McMillin DR (1978) Photoluminescence from copper(I) complexes with low-lying metal-to-ligand charge transfer excited states. J Chem Soc Chem Commun, pp 759–761. https://doi.org/10.1039/C39780000759

  12. Blaskie MW, McMillin DR (1980) Photostudies of copper(I) systems. 6. Room-temperature emission and quenching studies of bis(2,9-dimethyl-1,10-phenanthroline)copper(I). Inorg Chem 19:3519–3522. https://doi.org/10.1021/ic50213a062

    Article  CAS  Google Scholar 

  13. Scaltrito DV, Thompson DW, O’Callaghan JA, Meyer GJ (2000) MLCT excited states of cuprous bis-phenanthroline coordination compounds. Coord Chem Rev 208:243–266. https://doi.org/10.1016/S0010-8545(00)00309-X

    Article  CAS  Google Scholar 

  14. Lavie-Cambot A, Cantuela M, Leydet Y, Jonusauskas G, Bassani DM, McClenaghan ND (2008) Improving the photophysical properties of copper(I) bis(phenanthroline) complexes. Coord Chem Rev 252:2572–2584. https://doi.org/10.1016/j.ccr.2008.03.013

    Article  CAS  Google Scholar 

  15. Liu Y, You SC, Ho CL, Wong WY (2018) Recent advances in copper complexes for electrical/light energy conversion. Coord Chem Rev 375:514–557. https://doi.org/10.1016/j.ccr.2018.05.010

    Article  CAS  Google Scholar 

  16. Si Z, Li J, Li B, Liu S, Li W (2009) High light electroluminescence of novel Cu(I) complexes. J Lumin 129:181–186. https://doi.org/10.1016/j.jlumin.2008.09.014

    Article  CAS  Google Scholar 

  17. Min J, Zhang Q, Sun W, Cheng Y, Wang L (2011) Neutral copper(I) phosphorescent complexes from their ionic counterparts with 2-(2′-quinolyl)benzimidazole and phosphine mixed ligands. Dalton Trans 40:686–693. https://doi.org/10.1039/C0DT01031F

    Article  CAS  PubMed  Google Scholar 

  18. Bergmann L, Braun C, Nieger M, Bräse S (2018) The coordination- and photochemistry of copper(I) complexes: variation of N^N ligands from imidazole to tetrazole. Dalton Trans 47:608–621. https://doi.org/10.1039/C7DT03682E

    Article  CAS  PubMed  Google Scholar 

  19. Gérardy R, Monbaliu JCM (2016) Preparation, reactivity, and synthetic utility of simple benzotriazole derivatives. The chemistry of benzotriazole derivatives. Topics in Heterocyclic Chemistry 43:1–66. https://doi.org/10.1007/7081_2015_179

    Article  CAS  Google Scholar 

  20. Katritzky AR, Rogovoy BV (2003) Benzotriazole: an ideal synthetic auxiliary. Chem Eur J 9:4586–4593. https://doi.org/10.1002/chem.200304990

    Article  CAS  PubMed  Google Scholar 

  21. Loukopoulos E, Kostakis GE (2019) Recent advances in the coordination chemistry of benzotriazole-based ligands. Coord Chem Rev 395:193–229. https://doi.org/10.1016/j.ccr.2019.06.003

    Article  CAS  Google Scholar 

  22. Richardson C, Steel PJ (2003) Benzotriazole as a structural component in chelating and bridging heterocyclic ligands; ruthenium, palladium, copper and silver complexes. Dalton Trans, pp 992–1000. https://doi.org/10.1039/b206990c

  23. Peresypkina EV, Lider EV, Smolentsev AI, Sanchiz J, Gil-Hernández B, Potapov AS, Khlebnikov AI, Kryuchkova NA, Lavrenova LG (2012) Bis(benzotriazol-1-yl)methane as a linker in the assembly of new copper(II) coordination polymers: Synthesis, structure and investigations. Polyhedron 48:253–263. https://doi.org/10.1016/j.poly.2012.08.072

    Article  CAS  Google Scholar 

  24. Belousov YA, Goncharenko VE, Bondarenko GN, Ganina OG, Bezzubov SI, Taidakov IV (2020) Linear metal-organic frameworks based on Bis(1-Benzotriazolyl)methane and zinc and copper nitrates. Russ J Coord Chem 46:805–811. https://doi.org/10.1134/S1070328420080023

    Article  CAS  Google Scholar 

  25. Lobbia GG, Pellei M, Pettinari C, Santini C, Somers N, White AH (2002) Poly(1,2,3-benzotriazolyl)borate complexes with copper(I) and tri-organophosphane: an unprecedented κ1-coordination of [H2B(btz)2] (btz=1,2,3-benzotriazolyl) in the X-ray crystal structure of [Cu(PBn3)2{(btz)BH2(btz)}]. Inorg Chim Acta 333:100–108. https://doi.org/10.1016/S0020-1693(02)00774-0

    Article  CAS  Google Scholar 

  26. Avila L, Elguero J, Juliá S, del Mazo JM (1983) N-Polyazolymethanes. IV. Reaction of Benzotriazole with Methylene Chloride and Chloroform under Phase Transfer Conditions. Heterocycles 20:1787–1792. https://doi.org/10.3987/R-1983-09-1787

    Article  CAS  Google Scholar 

  27. Elguero J, Claramunt RM, Garcerán R, Julià S, Aliva L, del Mazo JM (1987) 13C NMR study of polyphenyl-, poly-N-azolyl-and poly-N-benzazoyl-methanes. Magn Reson Chem 25:260–268. https://doi.org/10.1002/mrc.1260250317

    Article  CAS  Google Scholar 

  28. Katritzky AR, Xie L (1996) para-Formylation of nitroarenes via vicarious nucleophilic substitution of hydrogen with tris(benzotriazol-1-yl)methane. Tetrahedron Lett 37:347–350. https://doi.org/10.1016/0040-4039(95)02169-8

    Article  CAS  Google Scholar 

  29. Katritsky AR, Wu H, Xie L (1997) Novel tele nucleophilic aromatic substitutions in α-(benzotriazol-1-yl)alkyl aryl ketones. Tetrahedron Lett 38:903–906. https://doi.org/10.1016/S0040-4039(96)02455-0

    Article  Google Scholar 

  30. Androsov DA, Neckers DC (2007) Photochemical study of Tris(benzotriazol-1-yl)methane. J Org Chem 72:1148–1152. https://doi.org/10.1021/jo061851d

    Article  CAS  PubMed  Google Scholar 

  31. Bortoluzzi M, Castro J, Enrichi F, Vomiero A, Busato M, Huang W (2018) Green-emitting manganese (II) complexes with phosphoramide and phenylphosphonic diamide ligands. Inorg Chem Comm 92:145–150. https://doi.org/10.1016/j.inoche.2018.04.023

    Article  CAS  Google Scholar 

  32. Bortoluzzi M, Castro J, Trave E, Dallan D, Favaretto S (2018) Orange-emitting manganese(II) complexes with chelating phosphine oxides. Inorg Chem Commun 90:105–107. https://doi.org/10.1016/j.inoche.2018.02.018

    Article  CAS  Google Scholar 

  33. Bortoluzzi M, Castro J, Girotto M, Enrichi F, Vomiero A (2019) Luminescent copper(I) coordination polymer with 1-methyl-1H-benzotriazole, iodide and acetonitrile as ligands. Inorg Chem Comm 102:141–146. https://doi.org/10.1016/j.inoche.2019.02.016

    Article  CAS  Google Scholar 

  34. Bortoluzzi M, Castro J (2019) Dibromomanganese(II) complexes with hexamethylphosphoramide and phenylphosphonic bis(diamide) ligands. J Coord Chem 72:309–327. https://doi.org/10.1080/00958972.2018.1560430

  35. Bortoluzzi M, Castro J, Gobbo A, Ferraro V, Pietrobon L, Antoniutti (2020) Tetrahedral photoluminescent manganese(II) halide complexes with 1,3-dimethyl-2-phenyl-1,3-diazaphospholidine-2-oxide as a ligand. New J Chem 44:571–579. https://doi.org/10.1039/c9nj05083c

    Article  CAS  Google Scholar 

  36. Bortoluzzi M, Castro J, Gobbo A, Ferraro V, Pietrobon L (2020) Light harvesting indolyl-substituted phosphoramide ligand for the enhancement of Mn(II) luminescence. Dalton Trans 49:7525–7534. https://doi.org/10.1039/d0dt01659d

    Article  CAS  PubMed  Google Scholar 

  37. Bortoluzzi M, Ferraro V, Castro J (2021) Synthesis and photoluminescence of manganese(II) naphtylphosphonic diamide complexes. Dalton Trans 50:3132–3136. https://doi.org/10.1039/D1DT00123J

    Article  CAS  PubMed  Google Scholar 

  38. Ferraro V, Bortoluzzi M, Castro J (2019) Synthesis of Bis(benzotriazol-1-yl)methane derivatives by Cobalt-catalyzed formation of C-C bonds. Proceedings 41:29. https://doi.org/10.3390/ecsoc-23-06469.

  39. Ferraro V, Bortoluzzi M, Castro J, Vomiero A, You S (2020) Luminescent Cu(I) complex with bis(indazol-1-yl)phenylmethane as chelating ligand. Inorg Chem Commun 116:107894. https://doi.org/10.1016/j.inoche.2020.107894

    Article  CAS  Google Scholar 

  40. Armarego WLF, Perrin DD (1996) Purification of laboratory chemicals, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  41. Keller RN, Wycoff HD, Marchi LE (1946) Copper(I) chloride. Inorg Synth 2:1–4. https://doi.org/10.1002/9780470132333.ch1

    Article  Google Scholar 

  42. Kubas GJ, Monzyk B, Crumblis AL (1990) Tetrakis(Acetonitrile)Copper(1+) Hexafluorophosphate(1-). Inorg Synth 28:68–70. https://doi.org/10.1002/9780470132593.ch15

    Article  CAS  Google Scholar 

  43. Bianchini C, Ghilardi CA, Meli A, Midollini S, Orlandini A (1985) Reactivity of copper(I) tetrahydroborates toward carbon dioxide and carbonyl sulfide. Structure of (triphos)Cu(η1-O2CH). Inorg Chem 24:924–931. https://doi.org/10.1021/ic00200a025

    Article  CAS  Google Scholar 

  44. Katritzky AR, Yang Z, Lam JN (1990) Tris(benzotriazol-1-yl)methane: A -CO2H synthon for the preparation of carboxylic acids. Synthesis 8:666–669. https://doi.org/10.1055/s-1990-26975

    Article  Google Scholar 

  45. Bruker (2015) APEX3, SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

    Google Scholar 

  46. McArdle P (2017) Oscail, a program package for small-molecule single-crystal crystallography with crystal morphology prediction and molecular modelling. J Appl Cryst 50:320–326. https://doi.org/10.1107/S1600576716018446

    Article  CAS  Google Scholar 

  47. Sheldrick GM (2015) SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  48. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  49. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65:148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  PubMed  Google Scholar 

  50. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625. https://doi.org/10.1021/cr800346f

    Article  CAS  PubMed  Google Scholar 

  51. Grabowski SJ (2016) Analysis of hydrogen bonds in crystals. Crystals 6:59 https://doi.org/10.3390/cryst6050059

    Article  CAS  Google Scholar 

  52. Taylor R (2014) Which intermolecular interactions have a significant influence on crystal packing? CrystEngComm 16:6852–6865. https://doi.org/10.1039/C4CE00452C

    Article  CAS  Google Scholar 

  53. Taylor R (2016) It isn’t, it is: the C-H···X (X = O, N, F, Cl) interaction really is significant in crystal packing. Cryst Growth Des 16:4165–4168. https://doi.org/10.1021/acs.cgd.6b00736

    Article  CAS  Google Scholar 

  54. Aakeröy CB, Champness NR, Janiak C (2010) Recent advances in crystal engineering. CrystEngComm 12:22–43. https://doi.org/10.1039/B919819A

    Article  Google Scholar 

  55. Gerber IC, Ángyán JC (2005) Hybrid functional with separated range. Chem Phys Lett 415:100–105. https://doi.org/10.1016/j.cplett.2005.08.060

    Article  CAS  Google Scholar 

  56. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  57. Minenkov Y, Singstad Å, Occhipinti G, Jensen VR (2012) The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans 41:5526–5541. https://doi.org/10.1039/C2DT12232D

    Article  CAS  PubMed  Google Scholar 

  58. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  59. Ullrich CA (2012) Time-dependent density functional theory. Oxford University Press, Oxford

    Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam J, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.

  61. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr B72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  62. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  63. Lu D, Tang H (2015) Theoretical survey of the ligand tunability of poly(azolyl)borates. Phys Chem Chem Phys 17:17027–17033. https://doi.org/10.1039/C5CP02094H

    Article  CAS  PubMed  Google Scholar 

  64. Kerscher T, Pust P, Betz R, Klüfers P, Mayer P (2009) Trispyrazol-1-ylmethane. Acta Crystallogr E 65:o108. https://doi.org/10.1107/S1600536808041767

    Article  CAS  Google Scholar 

  65. Müller C, Koch A, Görls H, Krieck S, Westerhausen M (2015) Tris(pyrazolyl)methanides of the Alkaline Earth Metals: Influence of the Substitution Pattern on Stability and Degradation. Inorg Chem 54:635–645. https://doi.org/10.1021/ic5025907

    Article  CAS  PubMed  Google Scholar 

  66. Claramunt RM, López C, Jaime C, Virgili A, Marco C, Elguero J (1995) The conformation of Trispyrazolylmethanes: an experimental and theoretical study. Heterocycles 40:175–186. https://doi.org/10.3987/COM-94-S6

    Article  CAS  Google Scholar 

  67. Ochando LE, Rius J, Louër D, Claramunt RM, López C, Elguero J, Amigó JM (1997) Phase transitions in Tris(3,5-dimethylpyrazol-1-yl)methane. The structure of the high-temperature phase from X-ray powder diffraction. Acta Crystallogr B 53:939–944. https://doi.org/10.1107/S0108768197007830

    Article  Google Scholar 

  68. Molčanov K, Milašinović V, Kojić-Prodić B (2019) Contribution of different crystal packing forces in π-stacking: from noncovalent to covalent multicentric bonding. Cryst Growth Des 19:5967–5980. https://doi.org/10.1021/acs.cgd.9b00540

    Article  CAS  Google Scholar 

  69. Mooibroek TJ, Gamez P (2012) How directional are D-H⋯phenyl interactions in the solid state (D = C, N, O)? CrystEngComm 14:8462–8467. https://doi.org/10.1039/C2CE26205C

    Article  CAS  Google Scholar 

  70. Cabrera AR, Gonzalez IA, Cortés-Arriagada D, Natali M, Berke H, Daniliuc CG, Camarada MB, Toro-Labbé A, Rojasa RS, Salasa CO (2016) Synthesis of new phosphorescent imidoyl-indazol and phosphine mixed ligand Cu(I) complexes——structural characterization and photophysical properties. RCS Adv 6:5141–5153. https://doi.org/10.1039/C5RA20450J

    Article  CAS  Google Scholar 

  71. Kubiček K, Veedu ST, Storozhuk D, Kia R, Techert S (2017) Geometric and electronic properties in a series of phosphorescent heteroleptic Cu(I) complexes: Crystallographic and computational studies. Polyhedron 124:166–176. https://doi.org/10.1016/j.poly.2016.12.035

    Article  CAS  Google Scholar 

  72. Bizzarri C, Fléchon C, Fenwick O, Cacialli F, Polo F, Gálvez-López MD, Yang CH, Scintilla S, Sun Y, Fröhlich R, De Cola L (2016) Luminescent neutral Cu(I) complexes: synthesis, characterization and application in solution-processed OLED. ECS J Solid State Sci Technol 5:R83–R90. https://doi.org/10.1149/2.0021606jss

    Article  CAS  Google Scholar 

  73. Kitai A (2008) Luminescent materials and applications. Wiley, Chichester

    Book  Google Scholar 

  74. Ghassemlooy Z, Alves LN, Zvánovec S, Khalighi MA (2017) Visible light communications: theory and applications. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

CACTI (University of Vigo) is gratefully acknowledged for X-ray data collection. We acknowledge Università Ca’ Foscari Venezia for financial support (Bando Spin 2018, D. R. 1065/2018 prot. 67416) and CINECA (COLUMN project 2020) for the availability of computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Ferraro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, V., Castro, J., Agostinis, L. et al. Luminescent heteroleptic copper(I) complexes with polydentate benzotriazolyl-based ligands. Transit Met Chem 46, 391–402 (2021). https://doi.org/10.1007/s11243-021-00458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00458-4

Navigation