A sky-blue luminescent silver(I) complex with a one-dimensional zipper-like structure constructed with 2-diphenylphosphinopyridine and thiocyanate


In this work, the synthesis, characterization, and phosphorescent properties of the coordination polymer, {Ag3(dppy)2[μ-SCN]3}n (1), are described. X-ray crystallography showed that the complex forms a one-dimensional infinite zipper-like chained structure linked by thiocyanate as the bridging ligand. The silver(I) complex exhibits a strong sky-blue phosphorescence with a high quantum yield of 70.2% in the solid state at ambient temperature. Additionally, following a temperature change from 418 to 77 K, the complex displays a remarkable luminescent thermochromic property.

Graphic abstract

A novel 1D zipper-like silver(I) coordination polymer is constructed by 2-diphenylphosphinopyridine and thiocyanate. It exhibits strong sky-blue phosphorescence with high quantum yield of 70.2% in solid state at ambient temperature. Furthermore, its reversible thermochromism is demonstrated.

This is a preview of subscription content, access via your institution.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Yang J, Xia N, Wang X, Liu X, Xu A, Wu Z, Luo Z (2015) One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging. Nanoscale 7:18464–18470

    CAS  Article  Google Scholar 

  2. 2.

    Cao F, Ju E, Liu C, Pu F, Ren J, Qu X (2016) Coupling a DNA–ligand ensemble with Ag cluster formation for the label-free and ratiometric detection of intracellular biothiols. Chem Commun 52:5167–5170

    CAS  Article  Google Scholar 

  3. 3.

    Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J (2013) Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv Funct Mater 23:4324–4331

    Article  Google Scholar 

  4. 4.

    Zhang XD, Chen J, Luo Z, Wu D, Shen X, Song SS, Sun YM, Liu PX, Huo S, Fan S, Fan F, Liang XJ, Xie J (2014) Enhanced tumor accumulation of sub2 nm gold nanoclusters for cancer radiation therapy. Adv Healthcare Mater 3:133–141

    CAS  Article  Google Scholar 

  5. 5.

    Muhammed MAH, Verma PK, Pal SK, Kumar RCA, Paul S, Omkumar RV, Pradeep T (2009) Bright, NIR-Emitting Au23 from Au25: characterization and applications including biolabeling. Chem-Eur J 15:10110–10120

    CAS  Article  Google Scholar 

  6. 6.

    Duan GX, Tian L, Wen JB, Li LY, Xie YP, Lu X (2018) An atomically precise all-tert-butylethynide-protected Ag51 superatom nanocluster with color tenability. Nanoscale 10:18915–18919

    CAS  Article  Google Scholar 

  7. 7.

    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413

    CAS  Article  Google Scholar 

  8. 8.

    Huang RW, Wei YS, Dong XY, Wu XH, Du CX, Zang SQ, Mak TCW (2017) Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat Chem 9:689–697

    CAS  Article  Google Scholar 

  9. 9.

    Shimizu K, Sawabe K, Satsuma A (2011) Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. J Catal Catal Sci Technol 1:331–341

    CAS  Article  Google Scholar 

  10. 10.

    Liu YY, Chai XQ, Chen MY, Jin RC, Ding WP, Zhu Y (2018) Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C−C bond formation. Angew Chem Int Ed 57:9775–9779

    CAS  Article  Google Scholar 

  11. 11.

    Wan XK, Wang JQ, Nan ZA, Wang QM (2017) Ligand effects in catalysis by atomically precise gold nanoclusters. Sci Adv 3:e1701823

    Article  Google Scholar 

  12. 12.

    Xu LJ, Wang JY, Zhu XF, Zeng XC, Chen ZN (2015) Phosphorescent cationic Au4Ag2 alkynyl cluster complexes for efficient solution-processed organic light-emitting diodes. Adv Funct Mater 25:3033–3042

    CAS  Article  Google Scholar 

  13. 13.

    Natarajan N, Shi LX, Xiao H, Wang JY, Zhang LY, Zhang X, Chen ZN (2019) PtAu3 cluster complexes with narrow-band emissions for solution-processed organic light emitting diodes. J Mater Chem C 7:2604–2614

    CAS  Article  Google Scholar 

  14. 14.

    Xiao H, Zhang X, Wang JY, Zhang LY, Zhang QC, Chen ZN (2019) enhancing phosphorescence through rigidifying the conformation to achieve high-efficiency OLEDs by modified PEDOT. ACS Appl Mater Interfaces 11:45853–45861

    CAS  Article  Google Scholar 

  15. 15.

    Huang YZ, Shi LX, Wang JY, Su HF, Chen ZN (2020) Elaborate design of Ag8Au10 cluster 2. catenane phosphors for high-efficiency light-emitting devices. ACS Appl Mater Interfaces 12:57264–57270

    CAS  Article  Google Scholar 

  16. 16.

    Song KY, Zhao LM, ZhangLi WTHH, Chen ZR (2019) 2-D Silver-thiocyanate layers directed by viologens: structural transformations upon low pressure stimuli, piezochromic luminescence, photocurrent responses and photocatalytic properties. Cryst Growth Des 19:177–192

    CAS  Article  Google Scholar 

  17. 17.

    Chakkaradhari G, Eskelinen T, Degbe C, Belyaev A, Melnikov AS, Grachova EV, Tunik SP, Hirva P, Koshevoy IO (2019) Oligophosphine-thiocyanate copper(I) and silver(i) complexes and their borane derivatives showing delayed fluorescence. Inorg Chem 58:3646–3660

    CAS  Article  Google Scholar 

  18. 18.

    Ranjbar ZR, Morsali A (2012) Solid state irreversible anion-exchange on one-dimensional silver(I) coordination polymer nanostructures. Inorganica Chimica Acta 382:171–176

    CAS  Article  Google Scholar 

  19. 19.

    Filipović NR, Ristić P, Janjic G, Klisurić O, Puerta A, Padrón JM, Donnard M, Gulea M, Todorovic TR (2019) Silver-based monomer and coordination polymer with organic thiocyanate ligand: structural, computational and antiproliferative activity study. Polyhedron 173:114132

    Article  Google Scholar 

  20. 20.

    Bowmaker GA, Nicola CD, Effendy HJV, Healy PC, King SP, Marchetti F, Pettinari C, Robinson WT, Skelton BW, Sobolev AN, Tăbăcaru A, White AH (2013) Oligo-nuclear silver thiocyanate complexes with monodentate tertiary phosphine ligands, including novel ‘cubane’ and ‘step’ tetramer forms of AgSCN:PR3 (1:1)4. Dalton Trans 42:277–291

    CAS  Article  Google Scholar 

  21. 21.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71:3–8

    Article  Google Scholar 

  22. 22.

    Chen CY, Zeng JY, Lee HM (2007) Argentophilic interaction and anionic control of supramolecular structures in simple silver pyridine complexes. Inorg Chim Acta 360:21–30

    CAS  Article  Google Scholar 

  23. 23.

    Yam VWW, Au VKM, Leung SYL (2015) Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem Rev 115:7589–7728

    CAS  Article  Google Scholar 

  24. 24.

    Artem’ev AV, Bagryanskaya IY, Doronina EP, Tolstoy PM, Gushchin AL, Rakhmanova MI, Ivanov AK, Suturina AO (2017) A new family of clusters containing a silver-centered tetracapped Ag@Ag4(μ3-P)4. tetrahedron, inscribed within a N12 icosahedron. Dalton Trans 56:12425–12429

    Article  Google Scholar 

  25. 25.

    Wang Y, Shi Y, Zou X, He Y, Wang X (2019) Pyridylphosphine supported Ag(I) and Cu(I) complexes for detection of alcohols and nitriles via structural transformations from 1D to 0D. CrystEngComm 21:5595–5601

    CAS  Article  Google Scholar 

  26. 26.

    Ruan ZW, Zhang X, Pang AY, Dai FR, Chen ZN (2020) Blue luminescent silver(I) complexes constructed by 2-diphenylphosphinopyridine and dicyanamide or tricyanomethanide. Inorg Chem Commun 116:107916

    CAS  Article  Google Scholar 

  27. 27.

    Khatun E, Ghosh A, Chakraborty P, Singh P, Bodiuzzaman M, Ganesan P, Nataranjan G, Ghosh J, Pal SK, Pradeep T (2018) A thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters. Nanoscale 10:20033–20042

    CAS  Article  Google Scholar 

  28. 28.

    Li J, Zhu XF, Zhang LY, Chen ZN (2015) Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv 5:34992–34998

    CAS  Article  Google Scholar 

  29. 29.

    Forniés J, Sicilia V, Casas JM, Martín A, López JA, Larraz C, Borja P, Ovejero C (2011) Pt–Ag clusters and their neutral mononuclear Pt(II) starting complexes: structural and luminescence studies. Dalton Trans 40:2898–2912

    Article  Google Scholar 

  30. 30.

    Yuan S, Liu SS, Sun D (2014) Two isomeric Cu4I4. luminophores: solvothermal/mechanochemical syntheses, structures and thermochromic luminescence properties. CrystEngComm 16:1927–1933

    CAS  Article  Google Scholar 

  31. 31.

    Huang RW, Dong XY, Yan BJ, Du XS, Wei DH, Zang SQ, Mak TCW (2018) Tandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembled materials. Angew Chem Int Ed 57:8560–8566

    CAS  Article  Google Scholar 

  32. 32.

    Wang Z, Liu JW, Su HF, Zhao QQ, Kurmoo M, Wang XP, Tung CH, Sun D, Zheng LS (2019) Chalcogens-induced Ag6Z4@Ag36 (Z = S or Se) core-shell nanoclusters: enlarged tetrahedral core and homochiral crystallization. J Am Chem Soc 141:17884–17890

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant Nos. 21701171, 21801242, and 21673239) and Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxm0851).

Author information



Corresponding author

Correspondence to Xu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, SQ., Wang, Q., Quan, J. et al. A sky-blue luminescent silver(I) complex with a one-dimensional zipper-like structure constructed with 2-diphenylphosphinopyridine and thiocyanate. Transit Met Chem (2021). https://doi.org/10.1007/s11243-021-00457-5

Download citation