Ruthenium (II) β-diketimine as hydroamination catalyst, crystal structure and DFT computations

Abstract

A new half-sandwich ruthenium (II) complex containing β-diketiminate ligand has been synthesized and used for hydroamination of acrylonitrile with aromatic and aliphatic amines. The catalytic activity of prepared complex was compared with a series of ruthenium complexes of β-diketiminate ligands, and the effect of electronic and steric properties of these ligands on catalytic activity of their complexes was investigated. Replacement of H atom in α position of β-diketiminate with (CF3) as an electron-withdrawing group leads to decreasing the reaction yield, and on the other hand, electron-donating group (CH3) has the opposite effect. In addition, crystal structure of [Ru(p-cymen)Cl(LH,Cl)] was determined by single X-ray crystallography. Hirshfeld surface analysis has been performed to determine the dominate interactions in molecular crystal. Furthermore, density functional, QTAIM and energy calculations have been carried out, to get the detailed insight into electronic and bonding characteristics of titled compound.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Taylor RD, MacCoss M, Lawson AD (2014) J Med Chem 57:5845–5859

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Surry DS, Buchwald SL (2008) Angew Chem Int Ed 47:6338–6361

    CAS  Article  Google Scholar 

  3. 3.

    Sapsford JS, Scott DJ, Allcock NJ, Fuchter MJ, Tighe CJ, Ashley AE (2018) Adv Synth Catal 360:1066–1071

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Fujita K-I, Enoki Y, Yamaguchi R (2008) Tetrahedron 64:1943–1954

    CAS  Article  Google Scholar 

  5. 5.

    Kaloğlu N, Achard M, Bruneau C, Özdemir İ (2019) Eur J Inorg Chem 2019:2598–2606

    Article  CAS  Google Scholar 

  6. 6.

    Huang L, Arndt M, Gooßen KT, Heydt H, Goossen LJ (2015) Chem Rev 115:2596–2697

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Muller TE, Hultzsch KC, Yus M, Foubelo F, Tada M (2008) Chem Rev 108:3795–3892

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Nishina N, Yamamoto Y (2012) Late transition metal-catalyzed hydroamination. Hydrofunctionalization. Springer, New york, pp 115–143

    Google Scholar 

  9. 9.

    Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J (2015) Catal Sci Technol 5:2017–2037

    CAS  Article  Google Scholar 

  10. 10.

    Martínez PH, Hultzsch KC, Hampel F (2006) Chem Commun 21:2221–2223

    Article  Google Scholar 

  11. 11.

    Weitershaus K, Ward BD, Kubiak R, Müller C, Wadepohl H, Doye S, Gade LH (2009) Dalton Trans 23:4586–4602

    Article  CAS  Google Scholar 

  12. 12.

    Ryu J-S, Li GY, Marks TJ (2003) J Am Chem Soc 125:12584–12605

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Li Y, Marks TJ (1996) J Am Chem Soc 118:9295–9306

    Article  Google Scholar 

  14. 14.

    Gribkov DV, Hultzsch KC, Hampel F (2006) J Am Chem Soc 128:3748–3759

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Seayad J, Tillack A, Hartung CG, Beller M (2002) Adv Synth Catal 344:795–813

    CAS  Article  Google Scholar 

  16. 16.

    Kozlov S (1936) J Gen Chem USSR 6:1341–1345

    CAS  Google Scholar 

  17. 17.

    Li K, Horton PN, Hursthouse MB, Hii KKM (2003) J Organomet Chem 665:250–257

    CAS  Article  Google Scholar 

  18. 18.

    Fadini L, Togni A (2003) Chem Commun 1:30–31

    Article  CAS  Google Scholar 

  19. 19.

    Hartung CG, Tillack A, Trauthwein H, Beller M (2001) J Org Chem 66:6339–6343

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Schaffrath H, Keim W (2001) J Mol Catal A Chem 168:9–14

    CAS  Article  Google Scholar 

  21. 21.

    Hong SH, Chlenov A, Day MW, Grubbs RH (2007) Angew Chem Int Ed 46:5148–5151

    CAS  Article  Google Scholar 

  22. 22.

    Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18–29

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Burling S, Paine BM, Nama D, Brown VS, Mahon MF, Prior TJ, Pregosin PS, Whittlesey MK, Williams JM (2007) J Am Chem Soc 129:1987–1995

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Khan F-A, Vallat A, Süss-Fink G (2012) J Mol Catal A Chem 355:168–173

    CAS  Article  Google Scholar 

  25. 25.

    Kumar P, Gupta RK, Pandey DS (2014) Chem Soc Rev 43:707–733

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Otsuka M, Yokoyama H, Endo K, Shibata T (2012) Org Biomol Chem 10:3815–3818

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Gök L, Türkmen H (2013) Tetrahedron 69:10669–10674

    Article  CAS  Google Scholar 

  28. 28.

    Webster R (2017) Dalton Trans 46:4483–4498

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Shaffer DW, Ryken SA, Zarkesh RA, Heyduk AF (2012) Inorg Chem 51:12122–12131

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Tian X, Goddard R, Pörschke K-R (2006) Organometallics 25:5854–5862

    CAS  Article  Google Scholar 

  31. 31.

    Fekl U, Goldberg KI (2003) Adv Inorg Chem 54:259–320

    CAS  Article  Google Scholar 

  32. 32.

    Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) Organometallics 24:6250–6259

    CAS  Article  Google Scholar 

  33. 33.

    Phillips AD, Thommes K, Scopelliti R, Gandolfi C, Albrecht M, Severin K, Schreiber DF, Dyson PJ (2011) Organometallics 30:6119–6132

    CAS  Article  Google Scholar 

  34. 34.

    Schreiber DF, Ortin Y, Müller-Bunz H, Phillips AD (2011) Organometallics 30:5381–5395

    CAS  Article  Google Scholar 

  35. 35.

    Schreiber DF, O’Connor C, Grave C, Ortin Y, Müller-Bunz H, Phillips AD (2012) ACS Catal 2:2505–2511

    CAS  Article  Google Scholar 

  36. 36.

    Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    CAS  Article  Google Scholar 

  37. 37.

    Lu T, Chen F (2012) J Comput Chem 33:580–592

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38.

    Hallman P, Stephenson T, Wilkinson G (1970) Inorg Synth 12:237–240

    CAS  Google Scholar 

  39. 39.

    Gilbert J, Wilkinson G (1969) J Chem Soc A Inorg Phys Theor 1749–1753

  40. 40.

    Bennett M, Huang TN, Matheson T, Smith A, Ittel S, Nickerson W (1982) Inorg Synth 21:74–78

    CAS  Google Scholar 

  41. 41.

    Ahmad N, Levison J, Robinson S, Uttley M, Wonchoba E, Parshall G (1974) Inorg Synth 15:45–64

    CAS  Google Scholar 

  42. 42.

    Phillips AD, Zava O, Scopelitti R, Nazarov AA, Dyson PJ (2010) Organometallics 29:417–427

    CAS  Article  Google Scholar 

  43. 43.

    Hamid MHS, Williams JM (2007) Chem Commun 725–727

  44. 44.

    Uchimaru Y (1999) Chem Commun 1133–1134

  45. 45.

    Bader R (1990) Atoms in molecules (A quantum theory). Clarendon Press, Oxford

    Google Scholar 

  46. 46.

    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design

  47. 47.

    Demircioğlu Z, Albayrak Ç, Büyükgüngör O (2014) J Mol Struct 1065:210–222

    Article  CAS  Google Scholar 

  48. 48.

    Tanak H, Ağar AA, Büyükgüngör O (2013) J Mol Struct 1048:41–50

    CAS  Article  Google Scholar 

  49. 49.

    Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    CAS  Article  Google Scholar 

  50. 50.

    Clausen HF, Chevallier MS, Spackman MA, Iversen BB (2010) New J Chem 34:193–199

    CAS  Article  Google Scholar 

  51. 51.

    Rohl AL, Moret M, Kaminsky W, Claborn K, McKinnon JJ, Kahr B (2008) Cryst Growth Des 8:4517–4525

    CAS  Article  Google Scholar 

  52. 52.

    Parkin A, Barr G, Dong W, Gilmore CJ, Jayatilaka D, McKinnon JJ, Spackman MA, Wilson CC (2007) CrystEngComm 9:648–652

    CAS  Article  Google Scholar 

  53. 53.

    S. Wolff, D. Grimwood, J. McKinnon, M. Turner, D. Jayatilaka, M. Spackman, in, University of Western Australia Crawley, Australia, 2012.

  54. 54.

    Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) IUCrJ 4:575–587

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Iran National Science Foundation (INSF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Nemati Kharat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dindar, S., Nemati Kharat, A., Safarkoopayeh, B. et al. Ruthenium (II) β-diketimine as hydroamination catalyst, crystal structure and DFT computations. Transit Met Chem (2021). https://doi.org/10.1007/s11243-021-00456-6

Download citation