Skip to main content

Advertisement

Log in

A series of coordination polymers constructed from mixed ligands for highly selective luminescence sensing of Fe3+ ions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four coordination polymers, namely {[Cd2(1,4-NDC)2(dbp)2]·DMF}n (1), {[Cd(1,4-NDC)(dbp)(H2O)]}n (2), {[Zn(2,6-NDC)(dbp)(H2O)]}n (3), and {[Cu(2,6-NDC)(dbp)]·0.25DMF·0.2H2O]}n (4) (1,4-NDC = 1,4-naphthalenedicarboxylic acid; 2,6-NDC = 2,6-naphthalenedicarboxylic acid; dbp = 4,4′-dimethyl-2,2′-bipyridine), were synthesized under solvothermal conditions by using a mixed-ligand strategy. Single-crystal X-ray diffraction analysis shows that compounds 1 and 2 contain similar 2D layers with {4462} topology, while compounds 3 and 4 exist as 1D chain structures, that extend into different 3D supramolecular architectures via H-bonds and interchain π∙∙∙π stacking interactions. Title compounds 1-3 exhibit strong emission at 342, 363 and 362 nm, respectively. Moreover, the selective luminescence sensing of compound 1 was investigated, owing to its excellent chemical stability and luminescence properties. Compound 1 shows remarkable fluorescence responses towards Fe3+ ions, with a detection limit of 1.0 × 10–5 M, indicating that this compound could sensitively detect trace amounts of Fe3+ in aqueous solutions through luminescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W (2018) ACS Appl Mater Interfaces 10:32328–32337

    Google Scholar 

  2. Vellingiri K, Philip L, Kim KH (2017) Coordin Chem Rev 353:159–179

    Article  CAS  Google Scholar 

  3. Park HD, Dinca M, Roman-Leshkov Y (2018) J Am Chem Soc 140:10669–10672

    Article  CAS  Google Scholar 

  4. Zuo Y, Yang J, Chen C, Xue YS, Zhang J (2020) Acta Crystallogr C 76:1076–1084

    Article  CAS  Google Scholar 

  5. Chen Z, Yang J, Cheng WW, Huang J, Yang D, Xue YS, Wu XH (2020) Transit Metal Chem 45:121–128

    Article  CAS  Google Scholar 

  6. Chen XB, Qi CX, Xu YB, Li H, Xu L, Liu B (2020) J Mater Chem C 8:17325–17335

    Article  CAS  Google Scholar 

  7. Lee J (2020) CrystEngComm 22:8081–8087

    Article  CAS  Google Scholar 

  8. Wei XQ, Shao D, Xue CL, Qu XY, Chai J, Li JQ, Du YE, Chen YQ (2020) CrystEngComm 22:5275–5279

    Article  CAS  Google Scholar 

  9. Huang H, Gao W, Zhang XM, Zhou AM, Liu JP (2019) CrystEngComm 21:694–702

    Article  CAS  Google Scholar 

  10. Zarate JA, Dominguez-Ojeda E, Sanchez-Gonzalez E, Martinez-Ahumada E, Lopez-Cervantes VB, Williams DR, Martis V, Ibarra IA, Alejandre J (2020) Dalton Trans 49:9203–9207

    Article  CAS  Google Scholar 

  11. Xu WQ, He S, Lin CC, Qiu YX, Liu XJ, Jiang T, Liu WT, Zhang XL, Jiang JJ (2018) Inorg Chem Comm 92:1–4

    Article  Google Scholar 

  12. Kim KC (2018) J Organomet Chem 854:94–105

    Article  CAS  Google Scholar 

  13. Nagarkar SS, Desai AV, Ghosh SK (2016) CrystEngComm 18:2994–3007

    Article  CAS  Google Scholar 

  14. Yang J, Wang Z, Hu KL, Li YS, Feng JF, Shi JL, Gu JL (2015) ACS Appl Mater Interfaces 7:11956–11964

    Article  Google Scholar 

  15. Hu YL, Ding M, Liu XQ, Sun LB, Jiang HL (2016) Chem Commun 52:5734–5737

    Article  CAS  Google Scholar 

  16. Xu BW, Niu RJ, Liu Q, Yang JY, Zhang WH, Young DJ (2020) Dalton Trans 49:12622–12631

    Article  CAS  Google Scholar 

  17. Zareba JK, Nyk M, Janczak J, Samoc M (2019) ACS Appl Mater Interfaces 11:10435–10441

    Article  CAS  Google Scholar 

  18. Zhang DM, Xu CG, Liu YZ, Fan CB, Zhu B, Fan YH (2020) J Solid State Chem 290:121549

    Article  CAS  Google Scholar 

  19. Hao SY, Hou SX, Hao ZC, Cui GH (2018) Spectrochim Acta A 189:613–620

    Article  CAS  Google Scholar 

  20. Liu D, Dong G, Wang X, Nie F, Li X (2020) CrystEngComm 22:7877–7887

    Article  CAS  Google Scholar 

  21. Li Z, Zhan Z, Hu M (2020) CrystEngComm 22:6727–6737

    Article  CAS  Google Scholar 

  22. Yang DD, Lu LP, Zhu ML (2020) CrystEngComm 22:5207–5217

    Article  CAS  Google Scholar 

  23. Wang JJ, Wu FF, Su N, Li PP, Wang SY, Ma HY, Li YW, Yu MH (2020) CrystEngComm 22:4650–4664

    Article  CAS  Google Scholar 

  24. He HM, Song Y, Sun FX, Bian Z, Gao LX, Zhu GS (2015) J Mater Chem A 3:16598–16603

    Article  CAS  Google Scholar 

  25. Song XZ, Song SY, Zhao SN, Hao ZM, Zhu M, Meng X, Wu LL, Zhang HJ (2014) Adv Funct Mater 24:4034–4041

    Article  CAS  Google Scholar 

  26. Xu N, Zhang Q, Zhang G (2019) Dalton Trans 48:2683–2691

    Article  CAS  Google Scholar 

  27. Sheldrick GM (2015) Acta Crystallogr Sect C 71:3–8

    Article  Google Scholar 

  28. Chen ZL, Dong Y, Liu QW, Bian RR, Cheng WW, Xue YS, Liu MP (2019) Transit Metal Chem 44:445–454

    Article  CAS  Google Scholar 

  29. Xue YS, He Y, Ren SB, Yue Y, Zhou L, Li YZ, Du HB, You XZ, Chen B (2012) J Mater Chem 22:10195–10199

    Article  CAS  Google Scholar 

  30. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  31. Valeur B (2002) Molecular fluorescence: principles and application. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB150009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or Yun-Shan Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, C., Liu, H. et al. A series of coordination polymers constructed from mixed ligands for highly selective luminescence sensing of Fe3+ ions. Transit Met Chem 46, 381–390 (2021). https://doi.org/10.1007/s11243-021-00455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00455-7

Navigation