The electronic effect of quinoline moieties on the lability of platinum(II) complexes of tridentate N^N^N and N^C^N ligands: a kinetic, mechanistic and theoretical analysis

Abstract

The rate of the chloride ligand displacement by three thiourea neutral nucleophiles (Nu) of different steric demands, namely thiourea (Tu), N,N’-dimethylthiourea (Dmtu) and N,N,N,’N-tetramethylthiourea (Tmtu) in the complex 2,6-bis(8-quinolyl)-pyridine chloroplatinum(II) (Pt3), was investigated under pseudo-first-order conditions as a function of concentration and temperature using UV–visible spectrophotometry and compared with the literature data of complexes: 2,6-bis(2-pyridyl)pyridine chloroplatinum(II) (Pt1), 1,3-bis(pyridyl)phenyl chloroplatinum(II) (Pt2) and 1,3-bis(8-quinolyl)phenyl chloroplatinum(II) (Pt4). The observed pseudo-first-order rate constants for substitution reactions obeyed the simple rate law \(k_{{{\text{obs}}}} = k_{2} \left[ {Nu} \right]\). The results demonstrated that the lability of the chloride ligand is dependent on the degree of synergy between electronic character and the planarity of architectural frame work of the ligands around the platinum centre. The second-order kinetics and large negative activation entropies (ΔS#) assert an associative mode of activation. DFT calculations were performed to support the interpretation and discussion of the experimental data.

Graphic abstract

The retardation in lability of quinoline systems; 2,6-bis(8-quinolyl)pyridine chloroplatinum(II) (Pt3) and 1,3-bis(8-quinolyl)phenyl chloroplatinum(II) (Pt4) is attributable to cis σ-donor effect and twisting of the quinoline rings that offsets the π-acceptor ability on the extended π-system. Conversely, high reactivity of pyridine systems; 2,6-bis(2-pyridyl)pyridine chloroplatinum(II) (Pt1) and 1,3-bis(pyridyl)phenyl chloroplatinum(II) (Pt2), is due to their rigid planar structure that facilitates effective π-acceptor ability.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Shen D-W, Pastan I, Gottesman MM (1998) Cancer Res 58:268–275

    CAS  PubMed  Google Scholar 

  2. 2.

    Maheshwari V, Bhattacharyya D, Fronczek FR, Marzilli PA, Marzilli LG (2006) Inorgan Chem 45:7182–7190

    CAS  Article  Google Scholar 

  3. 3.

    Goldschmidt V, Jenkins LMM, de Rocquigny H, Darlix J-L, Mély Y (2010) HIV Ther 4:179–198

    CAS  Article  Google Scholar 

  4. 4.

    Du P, Schneider J, Li F, Zhao W, Patel U, Castellano FN, Eisenberg R (2008) J Am Chem Soc 130:5056–5058

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Yu C, Chan KHY, Wong KMC, Yam VWW (2008) Chem Eur J 14:4577–4584

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Wong KM-C, Tang W-S, Chu BW-K, Zhu N, Yam VW-W (2004) Organometallics 23:3459–3465

    CAS  Article  Google Scholar 

  7. 7.

    Cummings SD (2009) Coord Chem Rev 253:449–478

    CAS  Article  Google Scholar 

  8. 8.

    Develay S, Blackburn O, Thompson AL, Williams JG (2008) Inorgan Chem 47:11129–11142

    CAS  Article  Google Scholar 

  9. 9.

    Alibrandi G, Minniti D, Monsu Scolaro L, Romeo R (1988) Inorgan Chem 27:318–324

    CAS  Article  Google Scholar 

  10. 10.

    Frey U, Helm L, Merbach AE, Romeo R (1989) J Am Chem Soc 111:8161–8165

    CAS  Article  Google Scholar 

  11. 11.

    Wendt OF, Oskarsson Å, Leipoldt JG, Elding LI (1997) Inorgan Chem 36:4514–4519

    CAS  Article  Google Scholar 

  12. 12.

    Plutino MR, Monsù Scolaro L, Romeo R, Grassi A (2000) Inorgan Chem 39:2712–2720

    CAS  Article  Google Scholar 

  13. 13.

    Basolo F, Chatt J, Gray H, Pearson R, Shaw B (1961) J Chem Soc 2207–2215

  14. 14.

    Gosling R, Tobe ML (1983) Inorgan Chem 22:1235–1244

    CAS  Article  Google Scholar 

  15. 15.

    Canovese L, Tobe ML, Cattalini L (1985) J Chem Soc Dalton Trans 1:27–30

    Article  Google Scholar 

  16. 16.

    Cusumano M, Marriochi P, Romeo R, Ricevuto V, Belluco U (1979) Inorgan Chim Acta 34:169–174

    CAS  Article  Google Scholar 

  17. 17.

    Wendt OF, Elding LI (1997) Inorgan Chem 36:6028–6032

    CAS  Article  Google Scholar 

  18. 18.

    Romeo R, Plutino MR, Monsù Scolaro L, Stoccoro S, Minghetti G (2000) Inorgan Chem 39:4749–4755

    CAS  Article  Google Scholar 

  19. 19.

    Jaganyi D, Reddy D, Gertenbach J, Hofmann A, van Eldik R (2004) Dalton Trans 299–304

  20. 20.

    Garner KL, Parkes LF, Piper JD, Williams JG (2009) Inorgan Chem 49:476–487

    Article  CAS  Google Scholar 

  21. 21.

    Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Ed 40:1680–1683

    CAS  Article  Google Scholar 

  22. 22.

    Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorgan Chem 42:1688–1700

    CAS  Article  Google Scholar 

  23. 23.

    Hofmann A, Dahlenburg L, van Eldik R (2003) Inorgan Chem 42:6528–6538

    CAS  Article  Google Scholar 

  24. 24.

    Reddy D, Jaganyi D (2006) Trans Metal Chem 31:792–800

    CAS  Article  Google Scholar 

  25. 25.

    Petrovic B, Bugarcic ZID, Dees A, Ivanovic-Burmazovic I, Heinemann FW, Puchta R, Steinmann SN, Corminboeuf C, Van Eldik R (2012) Inorgan Chem 51:1516–1529

    CAS  Article  Google Scholar 

  26. 26.

    Ongoma P, Jaganyi D (2012) Dalton Trans 41:10724–10730

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Wekesa IM, Jaganyi D (2016) J Coord Chem 69:389–403

    CAS  Article  Google Scholar 

  28. 28.

    Price JH, Williamson AN, Schramm RF, Wayland BB (1972) Inorgan Chem 11:1280–1284

    CAS  Article  Google Scholar 

  29. 29.

    Jäger M, Smeigh A, Lombeck F, Görls H, Collin J-P, Sauvage J-P, Hammarström L, Johansson O (2009) Inorgan Chem 49:374–376

    Article  CAS  Google Scholar 

  30. 30.

    Barder TE, Walker SD, Martinelli JR, Buchwald SL (2005) J Am Chem Soc 127:4685–4696

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Appleton TG, Hall JR, Ralph SF, Thompson CS (1984) Inorgan Chem 23:3521–3525

    CAS  Article  Google Scholar 

  32. 32.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Article  Google Scholar 

  33. 33.

    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    CAS  Article  Google Scholar 

  34. 34.

    Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  35. 35.

    Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894

    CAS  Article  Google Scholar 

  36. 36.

    Schiessl WC, Summa NK, Weber CF, Gubo S, Dücker-Benfer C, Puchta R, van Eikema Hommes NJ, van Eldik R (2005) Zeitschrift für anorganische und allgemeine Chemie 631:2812–2819

    CAS  Article  Google Scholar 

  37. 37.

    Murray SG, Hartley FR (1981) Chem Rev 81:365–414

    CAS  Article  Google Scholar 

  38. 38.

    Ashby MT (1990) Comments Inorgan Chem 10:297–313

    CAS  Article  Google Scholar 

  39. 39.

    Reedijk J (1999) Chem Rev 99:2499–2510

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Constable E (1986) Adv Inorgan Chem 30:69–121

    CAS  Article  Google Scholar 

  41. 41.

    Vezzu DA, Ravindranathan D, Garner AW, Bartolotti L, Smith ME, Boyle PD, Huo S (2011) Inorgan Chem 50:8261–8273

    CAS  Article  Google Scholar 

  42. 42.

    Schmülling M, Grove DM, van Koten G, van Eldik R, Veldman N, Spek A (1996) Organometallics 15:1384–1391

    Article  Google Scholar 

  43. 43.

    Van Eldik R (1994) J Chem Soc Dalton Trans 1257–1263.

  44. 44.

    Ryabov AD, Kuzmina LG, Polyakov VA, Kazankov GM, Ryabova ES, Pfeffer M, Van Eldik R (1995) J Chem Soc Dalton Trans 6:999–1006

    Article  Google Scholar 

  45. 45.

    Kapoor P, Kukushkin VY, Lövqvist K, Oskarsson Å (1996) J Organometal Chem 517:71–79

    CAS  Article  Google Scholar 

  46. 46.

    Sauvage JP, Collin JP, Chambron JC, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993–1019

    CAS  Article  Google Scholar 

  47. 47.

    Sanderson R (1954) J Chem Edu 31:238

    CAS  Article  Google Scholar 

  48. 48.

    Jaganyi D, Tiba F, Munro OQ, Petrović B, Bugarčić ŽD (2006) Dalton Trans 24:2943–2949

    Article  Google Scholar 

  49. 49.

    Cooper J, Ziegler T (2002) Inorgan Chem 41:6614–6622

    CAS  Article  Google Scholar 

  50. 50.

    Rindermann W, Palmer D, Kelm H (1980) Inorgan Chim Acta 40:179–182

    CAS  Article  Google Scholar 

  51. 51.

    Kinunda G, Jaganyi D (2014) Trans Metal Chem 39:451–459

    CAS  Article  Google Scholar 

  52. 52.

    Onunga DO, Jaganyi D, Mambanda A (2019) J Coord Chem 1–15

Download references

Acknowledgements

The authors are gratefully indebted to the University of KwaZulu-Natal and the National Research Foundation (NRF, South Africa) for bursary to I.M. Wekesa and financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isaac Masika Wekesa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Support information (ESI) available. Selected mass and NMR spetra, wavelengths for kinetic measurements for complex Pt3. Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 193 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wekesa, I.M., Jaganyi, D. The electronic effect of quinoline moieties on the lability of platinum(II) complexes of tridentate N^N^N and N^C^N ligands: a kinetic, mechanistic and theoretical analysis. Transit Met Chem (2021). https://doi.org/10.1007/s11243-021-00454-8

Download citation