A chromium(III) bis-acetylide complex containing a trans-diethyl-ethylenedithio-substituted tetrathiafulvalene (TTF) derivative: synthesis, crystal structures, and magnetic properties

Abstract

A new Cr(III) bis-acetylide complex containing redox-active ethynyl-substituted 4-methyl-4′,5′-trans-diethyl-ethylenedithio-tetrathiafulvalene, [Cr(III)cyclam(C≡C-MeEt2EDT-TTF)2]n+ ([1]n+) was synthesized. The crystal structures of two salts, [1][Ni(dmit)2] (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate) and [1][Ni(mnt)2]3 (mnt = maleonitriledithiolate), were determined by single-crystal X-ray diffraction. In the crystal of [1][Ni(dmit)2], the trans-diethyl group of [1]+ is in the axial position and prevents π-stacking of the TTF units, resulting in a negligibly weak spin–spin interaction between Cr3+ and [Ni(dmit)2]. In contrast, in [1][Ni(mnt)2]3, the trans-diethyl group is in the equatorial position in [1][Ni(mnt)2]3 owing to the strong attractive force between the π-stacked TTF+ units and the [Ni(mnt)2] anions. This π-stacking has a significant effect on the magnetic property of [1] [Ni(mnt)2]3. The π-stacked TTF+ units and [Ni(mnt)2] anions behave approximately as a one-dimensional S = 1/2 antiferromagnetic chain connecting the spins of Cr3+ antiferromagnetically.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J (2003) A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Mater 2:190–195

    CAS  Article  Google Scholar 

  2. 2.

    Ohba M, Yoneda K, Agustí G, Muñoz MC, Gaspar AB, Real JA, Yamasaki M, Ando H, Nakao Y, Sasaki S, Kitagawa S (2009) Bidirectional chemo-switching of spin state in a microporous framework. Angew Chem Int Ed 48:4767–4771

    CAS  Article  Google Scholar 

  3. 3.

    Nakaya M, Ohtani R, Hayami S (2020) Guest modulated spin states of metal complex assemblies. Eur J Inorg Chem 2020:3709–3719

    CAS  Article  Google Scholar 

  4. 4.

    Koumousi ES, Jeon I, Gao Q, Dechambenoit P, Woodruff DN, Merzeau P, Buisson L, Jia X, Li D, Volatron F, Mathonière C, Clérac R (2014) Metal-to-metal electron transfer in co/fe prussian blue molecular analogues: the ultimate miniaturization. J Am Chem Soc 136:15461–15464

    CAS  Article  Google Scholar 

  5. 5.

    Ishikawa M, Asari T, Matsuda M, Tajima H, Hanasaki N, Naito T, Inabe T (2010) Giant magnetoresistance response by the π–d interaction in an axially ligated phthalocyanine conductor with two-dimensional stacking structure. J Mater Chem 20:4432–4438

    CAS  Article  Google Scholar 

  6. 6.

    Komatsu H, Matsushita MM, Yamaura S, Sugawara Y, Suzuki K, Sugawara T (2010) Influence of magnetic field upon the conductance of a unicomponent crystal of a tetrathiafulvalene-based nitronyl nitroxide. J Am Chem Soc 132:4528–4529

    CAS  Article  Google Scholar 

  7. 7.

    Nishijo J, Miyazaki A, Enoki T, Watanabe R, Kuwatani Y, Iyoda M (2005) d-Electron-induced negative magnetoresistance of π-d interaction system based on brominated-ttf donor. Inorg Chem 44:2493–2506

    CAS  Article  Google Scholar 

  8. 8.

    Uji S, Shinagawa H, Terashima T, Yakabe T, Terai Y, Tokumoto M, Kobayashi A, Tanaka H, Kobayashi H (2001) Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature 410:908–910

    CAS  Article  Google Scholar 

  9. 9.

    Coronado E (2020) Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nature Rev Mater 5:87–104

    Article  Google Scholar 

  10. 10.

    Preuss KE (2015) Metal-radical coordination complexes of thiazyl and selenazyl ligands. Coord Chem Rev 289–290:49–61

    Article  Google Scholar 

  11. 11.

    Shi JY, Chen YC, Wu MZ, Liu ZY (2019) Synthesis of a series of hetero-multi-spin Ln2Cu3 complexes based on a methyl-pyrazole nitronyl nitroxide radical with slow magnetic relaxation behaviors. Dalton Trans 48(25):9187–9193

    CAS  Article  Google Scholar 

  12. 12.

    Morgan IS, Mansikkamäki A, Zissimou GA, Koutentis PA, Rouziѐres M, Clérac R, Tuononen HM (2015) Coordination complexes of neutral 1,2,4-benzotriazinyl radical ligand: synthesis, molecular and electronic structures, and magnetic properties. Chem Eur J 21:15843–15753

    CAS  Article  Google Scholar 

  13. 13.

    Mondal D, Majee MC, Kundu S, Mörtel M, Abbas G, Endo A, Khusniyarov MM, Chaudhury M (2018) Dinuclear iron(III) and cobalt(III) complexes featuring a biradical bridge: their molecular structures and magnetic, spectroscopic, and redox properties. Inorg Chem 57:1004–1016

    CAS  Article  Google Scholar 

  14. 14.

    Nishijo J, Shima Y, Enomoto M (2017) Synthesis, crystal structures and magnetic properties of new chromium(III)-acetylide-TTF type complexes. Polyhedron 136:35–41

    CAS  Article  Google Scholar 

  15. 15.

    Nishijo J, Enomoto M (2013) A series of weak ferromagnets based on a chromium–Acetylide–TTF type complex: correlation of the structures and magnetic properties and origin of the weak ferromagnetism. Inorg Chem 52:13263–13268

    CAS  Article  Google Scholar 

  16. 16.

    Nishijo J (2013) Chromium-ethynyltetrathiafulvalene complex based magnetic materials. Polyhedron 66:43–47

    CAS  Article  Google Scholar 

  17. 17.

    Nishijo J, Judai K, Nishi N (2011) Weak ferromagnetism and strong spin−spin interaction mediated by the mixed-valence ethynyltetrathiafulvalene-type ligand. Inorg Chem 50:3464–3470

    CAS  Article  Google Scholar 

  18. 18.

    Kini AM, Parakka JP, Geiser U, Wang H, Rivas F, DiNino E, Thomas S, Dudek JD, Williamns JM (1999) Tetraalkyl- and dialkyl-substituted BEDT-TTF derivatives and their cation-radical salts: synthesis, structure, and properties. J Mater Chem 9:883–892

    CAS  Article  Google Scholar 

  19. 19.

    Mora H, Fabre J, Giral L, Montginoul C (1992) Sumtheses et caracterisation des derives methyles du tetrathiafulvalene; nouvelle voie d’acces au tetrathiafulvalene. Bull Soc Chim Belg 101:137–146

    CAS  Article  Google Scholar 

  20. 20.

    Haley NF, Fichtner MW (1980) Facile synthesis of 1,3-dithiol-2-ones and 1,3-dithiol-2-thiones. J Org Chem 45:2959–2962

    CAS  Article  Google Scholar 

  21. 21.

    Dinsmore A, Garner CD, Joule JA (1998) 4-(2,2-dimethyldioxalan-4-yl)-5-(quinoxalin-2-yl)-1,3-dithiol-2-one, a proligand relating to the cofactor of the oxomolybdoenzymes. Tetrahedron 54:3291–3302

    CAS  Article  Google Scholar 

  22. 22.

    Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, Caro LD, Giacovazzo C, Polidori G, Spagna R (2005) SIR2004: an improved tool for crystal structure determination and refinement. J Appl Cryst 38:381–388

    CAS  Article  Google Scholar 

  23. 23.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

    Article  Google Scholar 

  24. 24.

    Segura JL, Martín N (2001) New concepts in tetrathiafulvalene chemistry. Angew Chem Int Ed 40:1372–1409

    CAS  Article  Google Scholar 

  25. 25.

    Zapata-Rivera J, Maynay D, Calzado CJ (2017) Evaluation of the magnetic interaction in salts containing [Ni(dmit)2] radical anions. Chem Mater 29:4317–4329

    CAS  Article  Google Scholar 

  26. 26.

    Bonner JC, Fisher ME (1964) Linear magnetic chains with anisotropic coupling. Phys Rev 135:A640-658

    Article  Google Scholar 

  27. 27.

    Estes WE, Gavel DP, Hatfield WE, Hodgson DJ (1978) Magnetic and structural characterization of dibromo- and dichlorobis(thiazole)copper(II). Inorg Chem 17:1415–1421

    CAS  Article  Google Scholar 

  28. 28.

    Nakajima H, Katsuhara M, Ashizawa M, Kawamoto T, Mori T (2004) Ferromagnetic anomaly associated with the antiferromagnetic transition in (Donor)[Ni(mnt)2]-type charge-transfer salts. Inorg Chem 43:6075–6082

    CAS  Article  Google Scholar 

  29. 29.

    Lopes G, Gama V, Simão D, Santos IC, Lopes EB, Pereira CJ, Almeida M, Rabaça S (2019) Structural relations in (1:1) and (2:1) cyanobenzene-ethylenedithio-TTF radical salts; the role of C≡N...H interactions. CrystEngComm 21:7489–7497

    CAS  Article  Google Scholar 

  30. 30.

    Allan ML, Coomber AT, Marsden IR, Martens JHF, Friend RH (1993) NH4Ni(mnt)2H2O - A low dimensional organic ferromagnet. Synth Metals 56(2–3):3317–3322

    CAS  Article  Google Scholar 

  31. 31.

    Coomber AT, Beljonne D, Friend RH, Brédas JL, Charlton A, Robertson N, Underhill AE, Kurmoo M, Day P (1996) Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2·H2O. Nature 380:144–146

    CAS  Article  Google Scholar 

  32. 32.

    Pullen AE, Faulmann C, Pokhodnya KI, Cassoux P, Tokumoto M (1998) Structural and magnetic properties of M(mnt)2 salts (M = Ni, Pt, Cu) with a ferrocene-based cation, [FcCH2N(CH3)3]+. Interplay between M...M and M...S intermolecular interactions. Inorg Chem 37:6714–6720

    CAS  Article  Google Scholar 

  33. 33.

    Weiher JF, Melby LR, Benson RE (1964) 1,2-dicyanoethylene-1,2-dithiolate chelates. J Am Chem Soc 86:4329–4333

    CAS  Article  Google Scholar 

  34. 34.

    Willett RD, Gómez-García CJ, Ramakrishna BL, Twamley B (2005) (NBu4)Ni(mnt)2: A novel bistable high temperature spin-Peierls-like system. Polyhedron 24:2232–2237

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junichi Nishijo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishijo, J., Uchida, M., Enomoto, M. et al. A chromium(III) bis-acetylide complex containing a trans-diethyl-ethylenedithio-substituted tetrathiafulvalene (TTF) derivative: synthesis, crystal structures, and magnetic properties. Transit Met Chem (2021). https://doi.org/10.1007/s11243-021-00453-9

Download citation