Insight into new mono- and tri-nuclear nickel(II)-based complexes supported by structural variation of salamo-like ligands

Abstract

New mono- and tri-nuclear Ni(II)-based complexes, [Ni(L1)2] (1) and [{Ni(L2)(DMF)(μ-OAc)}2Ni]·2EtOH·2CH2Cl2 (2), supported by half-salamo- and salamo-like ligands HL1 and H2L2 have been synthesized, respectively. Single-crystal X-ray structural analyses revealed that the Ni(II) atom in the mono-nuclear complex 1 is six-coordinate and the coordination geometry is octahedral. The complex 2 is a tri-nuclear structure, and the three six-coordinate Ni(II) atoms have octahedral geometries. In addition, UV–Vis titration experiments of the two salamo-like ligands with Ni(OAc)2·4H2O in ethanol showed iso-absorption points between 250 and 350 nm, conforming the coordination of HL1 and H2L2 with Ni(OAc)2·4H2O. The fluorescence properties of HL1, H2L2 and their Ni(II) complexes were studied. The supramolecular structures of the two Ni(II) complexes were constructed via intermolecular hydrogen bond interactions. Hirshfeld surfaces analyses and DFT calculations were performed on the two complexes.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Ryu CH, Kwak SWH, Lee HW, Lee JH, Hwang H, Kim M, Chung Y, Kim Y, Park M, Lee MH (2019) Inorg Chem 58:12358–12364

    CAS  Article  Google Scholar 

  2. 2.

    Akine S (2012) J Incl Phenom Macrocycl Chem 72:25–54

    CAS  Article  Google Scholar 

  3. 3.

    Kazuya K, Takuya S, Takashi Y (2011) Inorg Chem 50:9337–9344

    Article  Google Scholar 

  4. 4.

    Finelli A, Hérault N, Crochet A, Fromm KM (2018) Cryst Growth Des 18:1215

    CAS  Article  Google Scholar 

  5. 5.

    Nakamura T, Kawashima Y, Nishibori E, Nabeshima T (2019) Inorg Chem 58:7863

    Article  Google Scholar 

  6. 6.

    Akine S, Taniguchi T, Nabeshima T (2001) Chem Lett 30:682

    Article  Google Scholar 

  7. 7.

    Yu M, Mu HR, Liu LZ, Li N, Bai Y, Dong XY (2019) Chin J Inorg Chem 35:1109.7

    Google Scholar 

  8. 8.

    Zhang Y, Yu M, Pan YQ, Zhang Y, Xu L, Dong XY (2020) Appl Organomet Chem 34:e5442

    CAS  Google Scholar 

  9. 9.

    Yu M, Zhang Y, Pan YQ, Wang L (2020) Inorg Chim Acta 509:119701

    CAS  Article  Google Scholar 

  10. 10.

    Wang JF, Bian RN, Feng T, Xie KF, Wang L, Ding YJ (2021) Microchem J 160:105676.23

    Google Scholar 

  11. 11.

    Dong XY, Kang QP, Li XY, Ma JC, Dong WK (2018) Crystals 8:139

    Article  Google Scholar 

  12. 12.

    Chen ZZ, Zhang WZ, Zhang T, Zhang Y, Dong WK (2020) New J Chem 44:19836

    CAS  Article  Google Scholar 

  13. 13.

    Xu X, Bian RN, Guo SZ, Dong WK, Ding YJ (2020) Inorg Chim Acta 513:119945

    CAS  Article  Google Scholar 

  14. 14.

    Li YJ, Bian RN, Li P, Xie KF, Dong WK (2020) Polyhedron 192:114867

    CAS  Article  Google Scholar 

  15. 15.

    Pan YQ, Zhang Y, Yu M, Zhang Y, Wang L (2020) Appl Organomet Chem 34:e5441

    CAS  Article  Google Scholar 

  16. 16.

    An XX, Chen ZZ, Mu HR, Zhao L (2020) Inorg Chim Acta 511:119823

    CAS  Article  Google Scholar 

  17. 17.

    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann HJ (2009) J Appl Cryst 42:339

    CAS  Article  Google Scholar 

  18. 18.

    Sheldrick GM (2015) Acta Cryst C71:3

    Google Scholar 

  19. 19.

    Pan YQ, Xu X, Zhang Y, Zhang Y (2020) Spectrochim Acta A 229:117927

    CAS  Article  Google Scholar 

  20. 20.

    Xu X, Feng T, Feng SS, Dong WK (2021) Appl Organomet Chem 35:e6057

    CAS  Google Scholar 

  21. 21.

    Zhang SZ, Chang J, Zhang HJ, Sun YX, Wu Y, Wang YB (2020) Chin J Inorg Chem 36:503–514

    CAS  Google Scholar 

  22. 22.

    Zhang Y, Liu LZ, Peng YD, Li N, Dong WK (2019) Transit Met Chem 44:627–639

    CAS  Article  Google Scholar 

  23. 23.

    Pradip B, Soumavo G, Rosa MG, Antonio F, Ashutosh G (2020) Inorg Chem 59:15848–15861

    Article  Google Scholar 

  24. 24.

    Koga T, Kanayama K, Thakkar AJ (1997) Chem Phys Lett 62:1–11

    CAS  Google Scholar 

  25. 25.

    Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    CAS  Article  Google Scholar 

  26. 26.

    Mahmoudi G, Seth SK, Bauzá A, Zubkov FI, Gurbanov AV (2018) CrystEngComm 20:2812–2821

    CAS  Article  Google Scholar 

  27. 27.

    Kang QP, Li XY, Wang L, Zhang Y, Dong WK (2019) Appl Organomet Chem 33:e5013

    Article  Google Scholar 

  28. 28.

    An XX, Zhao Q, Mu HR, Dong WK (2019) Crystals 9:101

    CAS  Article  Google Scholar 

  29. 29.

    Saha S, Choudhury CR, Pilet G (2017) J Coord Chem 70:1389–1405

    CAS  Article  Google Scholar 

  30. 30.

    Ren GY, Li J, Zhou JH, Yan B, Ren Y-H, Sun XH, Ma HX (2017) Appl Organomet Chem 32:e4169

    Article  Google Scholar 

  31. 31.

    Saikat KS, Gopal CM, Tanusree K (2011) J Mol Struct 1000:120–126

    Article  Google Scholar 

  32. 32.

    Saikat KS, Nitish CS, Soumen G, Tanusree K (2011) Chem Phys Lett 506:309–314

    Article  Google Scholar 

  33. 33.

    Saouli S, Selatnia I, Zouchoune B, Sid A, Zendaoui SM, Bensouici C, Bendeif EE (2020) J Mol Struct 1213:128203

    CAS  Article  Google Scholar 

  34. 34.

    Parvathy G, Kaliammal R, Velsankar K, Velsankar K, Sankaranarayanan S (2020) J Mol Struct 758:137934

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21761018), the Open Fund for the Key Laboratory of Education Department in Anhui Province (LCECSC-03) and Overseas Visiting and Research Project for Outstanding Young Talents of Colleges and Universities in Anhui Province (gxgwfx2019043), three of which are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Kui Dong.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 318 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, YJ., Li, YJ., Li, P. et al. Insight into new mono- and tri-nuclear nickel(II)-based complexes supported by structural variation of salamo-like ligands. Transit Met Chem 46, 323–334 (2021). https://doi.org/10.1007/s11243-021-00449-5

Download citation