Influence of the ligand structure on the properties of bidentate salicylaldimine nickel(II) complexes in ethylene oligomerization

Abstract

Three nickel(II) complexes (C1C3) bearing diamine-bridged 4-hydroxysalicylaldehyde ligands (L1L3) were successfully synthesized, and all the compounds were characterized by physicochemical and spectroscopic methods. The influence of the oligomerization parameters on the catalytic properties of complex C2 was systematically investigated. The results showed that oligomerization parameters played an important role in the catalytic properties and the catalytic activity was 19.90 × 104 g/(mol·Ni·h) and the selectivity of C8+ olefins was 60.25% when the precatalyst dosage was 5 μmol, the Al/Ni molar ratio was 500, the temperature was 25 °C, the reaction time was 30 min and the pressure of ethylene was 0.7 MPa. Complexes C1C3 with different lengths of the bridged group were evaluated for ethylene oligomerization, and the results showed that the length of the alkyl chain in the ligand had little influence on the catalytic properties. Complex C4 based on ethanediamine-bridged salicylaldimine and C5 based on the hyperbranched salicylaldimine in our previous work were also investigated to study the influence of the ligand structure on the catalytic properties. The catalytic activity [31.80 × 104 g/(mol·Ni·h)] and the content of the low-carbon oligomers (70.16%) for complex C4 were higher than complex C2 with hydroxyl substituent in benzene ring. The catalytic activity and the content of the low carbon oligomers for complex C5 were far higher than other four complexes.

This is a preview of subscription content, access via your institution.

Scheme 1:
Fig. 1
Fig. 2
Fig. 3
Scheme 2:

References

  1. 1.

    Song DP, Shi XC, Wang YX, Yang JX, Li YS (2012) Organometallics 31:966–975

    CAS  Article  Google Scholar 

  2. 2.

    Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117:6414–6415

    CAS  Article  Google Scholar 

  3. 3.

    Li CQ, Wang FF, Lin ZY, Zhang N, Wang J (2017) Appl Organomet Chem 31:e3756

    Google Scholar 

  4. 4.

    Sun WH, Song SJ, Li BX, Redshaw C, Hao X, Li YS, Wang FS (2012) Dalton Trans 41:11999–12010

    CAS  Article  Google Scholar 

  5. 5.

    Rhinehart JL, Mitchell NE, Long BK (2014) ACS Catal 4:2501–2504

    CAS  Article  Google Scholar 

  6. 6.

    Ahamad T, Alshehri SM (2014) Polym Int 63:1965–1973

    CAS  Article  Google Scholar 

  7. 7.

    Wang CM, Friedrich S, Younkin TR, Li RT, Day MW (1998) Organometallics 17:3149–3151

    CAS  Article  Google Scholar 

  8. 8.

    Younkin TR, Connor EF, Henderson JI, Friedrich SK, Bansleben DA (2000) Science 287:460–462

    CAS  Article  Google Scholar 

  9. 9.

    Boulens P, Lutz M, Jeanneau E, Olivier-Bourbigou H, Breuil PI (2014) Eur J Inorg Chem 2014:3754–3762

    CAS  Article  Google Scholar 

  10. 10.

    Liu H, Zhao WZ, Hao X (2011) Redshaw Carl, Sun WH. Organometallics 30:2418–2424

    CAS  Article  Google Scholar 

  11. 11.

    Chen L, Huo HL, Wang LB, Ma LL, Jiang Y, Xie JY, Wang J (2018) Chem Res Chin Univ 34:945–951

    CAS  Article  Google Scholar 

  12. 12.

    Wang J, Zhang N, Li CQ, Shi WG, Lin ZY (2016) J Organomet Chem 822:104–111

    CAS  Article  Google Scholar 

  13. 13.

    Mu HL, Ye WP, Song DP, Li YS (2010) Organometallics 29:6282–6290

    CAS  Article  Google Scholar 

  14. 14.

    Song DP, Li YG, Lu R, Hu NH, Li YS (2008) Appl Organomet Chem 22:333–340

    CAS  Article  Google Scholar 

  15. 15.

    Kim I, Kwak CH, Kim JS, Ha CS (2005) Appl Catal A 287:98–107

    CAS  Article  Google Scholar 

  16. 16.

    Bazarganipour M, Salavati-Niasari M (2016) Chem Eng J 286:259–265

    CAS  Article  Google Scholar 

  17. 17.

    Haghverdi M, Tadjarodi A, Bahri-Laleh N, Nekoomanesh-Haghighi M (2018) Appl Organomet Chem 32:e4015

    Article  Google Scholar 

  18. 18.

    Wang J, Liu JY, Chen LD, Lan TY, Wang LB (2020) J Chem Res 44:206–211

    CAS  Article  Google Scholar 

  19. 19.

    Chen R, Bacsa J, Mapolie SF (2002) Inorg Chem Commun 5:724–726

    CAS  Article  Google Scholar 

  20. 20.

    Ahmadjo S, Arabi H, Zohuri G, Nekoomanesh M, Nejabat G (2014) J Therm Anal Calorim 116:417–426

    CAS  Article  Google Scholar 

  21. 21.

    Zhang N, Wang SH, Song L, Li CQ, Wang J (2016) Inorg Chim Acta 453:369–375

    CAS  Article  Google Scholar 

  22. 22.

    Do LH, Labinger JA, Bercaw JE (2013) ACS Catal 3:2582–2585

    CAS  Article  Google Scholar 

  23. 23.

    Li CQ, Wang FF, Lin ZY, Zhang N, Wang J (2016) Inorg Chim Acta 453:430–438

    CAS  Article  Google Scholar 

  24. 24.

    Chen LD, Huo HL, Wang LB, Ma LL, Jiang Y, Xie JY, Wang J (2019) Inorg Chim Acta 491:67–75

    CAS  Article  Google Scholar 

  25. 25.

    Wang J, Xie JY, Wang LB, Jiang Y, Zhang N (2019) Can J Chem 97:296–302

    Article  Google Scholar 

  26. 26.

    Wang J, Fu ZJ, Zhang N, Li CQ, Shi WG (2017) J Macromol Sci Part A 54:465–471

    CAS  Article  Google Scholar 

  27. 27.

    Chandran D, Kwak CH, Oh JM, Ahn IY, Ha CS, Kim I (2008) Catal Lett 125:27–34

    CAS  Article  Google Scholar 

  28. 28.

    Musaev DG, Froese RDJ, Svensson M, Morokuma K (1997) J Am Chem Soc 119:367–374

    CAS  Article  Google Scholar 

  29. 29.

    Ahamad T, Alshehri SM (2014) Adv Polym Technol 32:586–589

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Heilongjiang Natural Science Foundation of China (E2018012) for the financial support. We are grateful to State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University and Analysis and Test Center of Northeast Petroleum University for the characterization work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cuiqin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2567 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Guo, L., Li, F. et al. Influence of the ligand structure on the properties of bidentate salicylaldimine nickel(II) complexes in ethylene oligomerization. Transit Met Chem 46, 307–314 (2021). https://doi.org/10.1007/s11243-021-00447-7

Download citation