Synthesis, structure and in vitro anticancer activity of ruthenium(II) and platinum(II) complexes with chiral aminophosphine ligands


(R)-[Ru(η6-p-MeC6H4iPr)Cl2{Ph2PNHCH(CH3)(C6H4-4-F)}] (1) and cis-(R,R)-[PtCl2{Ph2PNHCH(CH3)(C6H4-4-F)}2] (2) have been obtained by the reaction of the chiral aminophosphine (R)-Ph2PNHCH(CH3)(C6H4-4-F) with [{RuCl(μ-Cl)(η6-p-MeC6H4iPr)}2] or [PtCl2(cod)] (cod = cycloocta-1,5-diene). Both complexes were characterized by physico-chemical and spectroscopic methods. Compound 1 was also characterized by X-ray crystallography. The antitumor potential of both compounds was investigated by using the crystal violet antiproliferation assay. Complexes 1 and 2 were found to inhibit the growth of three human cancer cell lines, whereby the Ru complex was considerably more potent than the Pt complex, with IC50 values between 1 and 3 and 12–15 µM, respectively, but still less potent than cisplatin in the same three cell lines.

This is a preview of subscription content, access via your institution.

Scheme 1.
Fig. 1
Fig. 2


  1. 1.

    Al-Masri HT, Mohamed BM, Moussab Z, Alkordic MH (2013) Helv Chim Acta 96:738–746

    CAS  Google Scholar 

  2. 2.

    Majoumo-Mbe F, Lönnecke P, Hey-Hawkins E (2008) Z Anorg Allg Chem 634:2385–2390

    CAS  Google Scholar 

  3. 3.

    Revés M, Ferrer C, León T, Doran S, Etayo P, Vidal-Ferran A, Riera A, Verdaguer X (2010) Angew Chem Int Ed 49:9452–9455

    Google Scholar 

  4. 4.

    Dann SE, Durran SE, Elsegood MRJ, Smith MB, Staniland PM, Talib S, Dale SH (2006) J Organomet Chem 691:4829–4842

    CAS  Google Scholar 

  5. 5.

    Durran SE, Smith MB, Dale SH, Coles SJ, Hursthouse MB, Light ME (2006) Inorg Chim Acta 359:2980–2988

    CAS  Google Scholar 

  6. 6.

    Smith MB, Elsegood MRJ (2002) Tetrahedron Lett 43:1299–1301

    CAS  Google Scholar 

  7. 7.

    Elsegood MRJ, Karakus M, Noble TA, Smith MB (2019) Phosphorus. Sulfur, Silicon Relat Elem 194(4–6):349–350

    CAS  Google Scholar 

  8. 8.

    Aliende C, Pérez-Manrique M, Jalón FA, Manzano BR, Rodríguez AM, Cuevas JV, Espino G, Martínez MÁ, Massaguer A, González-Bártulos R, de Llorens M, Moreno V (2012) J Inorg Biochem 117:171–188

    CAS  PubMed  Google Scholar 

  9. 9.

    Caporali M, Bianchini C, Bolaño S, Bosquain SS, Gonsalvi L, Oberhauser W, Rossin A, Peruzzini M (2008) Inorg Chim Acta 361:3017–3023

    CAS  Google Scholar 

  10. 10.

    Latypov S, Strelnik A, Balueva A, Spiridonova Y, Karasik AA, Sinyashin OG (2016) Eur J Inorg Chem 1068–1084.

  11. 11.

    Musina EI, Fesenko TI, Strelnik ID, Polyancev FM, Latypov SK, Lönnecke P, Hey-Hawkins E, Karasik AA, Sinyashin OG (2015) Dalton Trans 44:13565–13572

    CAS  PubMed  Google Scholar 

  12. 12.

    Musina EI, Wittmann TI, Strelnik ID, Naumova OE, Karasik AA, Krivolapov DB, Islamov DR, Kataeva ON, Sinyashin OG, Lönnecke P, Hey-Hawkins E (2010) Polyhedron 100:344–350

    Google Scholar 

  13. 13.

    Musina EI, Karasik AA, Strelnik ID, Lönnecke P, Hey-Hawkins E, Sinyashin OG (2011) Phosphorus. Sulfur, Silicon Relat Elem 186:761–763

    CAS  Google Scholar 

  14. 14.

    Karasik AA, Naumov RN, Spiridonova YS, Sinyashin OG, Lönnecke P, Hey-Hawkins E (2007) Z Anorg Allg Chem 633:205–210

    CAS  Google Scholar 

  15. 15.

    Bálint E, Tajti Á, Tripolszky A, Keglevich G (2018) Dalton Trans 47:4755–4778

    PubMed  Google Scholar 

  16. 16.

    Román-Martínez MC, Díaz-Auñón JA, Lecea CS, Alper H (2004) J Mol Catal A 213:177–182

    Google Scholar 

  17. 17.

    Aydemir M, Ocak YS, Rafikova K, Kystaubayeva N, Kayan C, Zazybin A, Ok F, Baysal A, Temel H (2014) Appl Organomet Chem 28:396–404

    CAS  Google Scholar 

  18. 18.

    Kayan C, Meriç N, Aydemir M, Ocak YS, Baysal A, Temel H (2014) Appl Organometal Chem 28:127–133

    CAS  Google Scholar 

  19. 19.

    Rong C, Li W, Tan C (2019) Appl Organometal Chem 33:1–8

    Google Scholar 

  20. 20.

    Cook E, Iwasaki K, Masuda JD, Xia A (2015) Polyhedron 87:38–42

    CAS  Google Scholar 

  21. 21.

    Jain A, Helm ML, Linehan JC, DuBois DL, Shaw WJ (2012) Inorg Chem Commun 22:65–67

    CAS  Google Scholar 

  22. 22.

    Zhang Q, Hua G, Bhattacharyya P, Slawin AMZ, Woollins JD (2003) Eur J Inorg Chem 13:2426–2437

    Google Scholar 

  23. 23.

    Brown GM, Elsegood MRJ, Lake AJ, Sanchez-Ballester NM, Smith MB, Varley TS, Blann K (2007) Eur J Inorg Chem 1405–1414

  24. 24.

    Groves LM, Ward BD, Newman PD, Horton PN, Coles SJ, Pope SJA (2018) Dalton Trans 47:9324–9333

    CAS  PubMed  Google Scholar 

  25. 25.

    Aydemir M, Baysal B (2010) J Organomet Chem 695:2506–2511

    CAS  Google Scholar 

  26. 26.

    Gholivand K, Kahnouji M, Maghsoud Y, Hosseini M, Roe SM (2019) J Organomet Chem 880:281–292

    CAS  Google Scholar 

  27. 27.

    Cheng J, Wang F, Xu J-H, Pan Y, Zhang Z (2003) Tetrahedron Lett 44:7095–7098

    CAS  Google Scholar 

  28. 28.

    Fetz M, Gerber R, Blacque O, Frech CM (2011) Chem Eur J 17:4732–4736

    CAS  PubMed  Google Scholar 

  29. 29.

    Ji J, Wu F, Shi L-M, Jia A-Q, Zhang Q-F (2019) J Organomet Chem 885:1–6

    CAS  Google Scholar 

  30. 30.

    Broomfield LM, Alonso-Moreno C, Martin E, Shafir A, Posadas I, Ceña V, Castro-Osma JA (2017) Dalton Trans 46:16113–16125

    CAS  PubMed  Google Scholar 

  31. 31.

    Weiss RB, Christian MC (1993) Drugs 46:360–377

    CAS  PubMed  Google Scholar 

  32. 32.

    Goitia H, Villacampa MD, Laguna A, Gimeno MC (2019) Inorganics 7:1–13

    Google Scholar 

  33. 33.

    Gholivand K, Maghsoud Y, Kahnouji M, Hosseini M, Satari M, Abdolmaleki P, Roe SM (2019) Appl Organometal Chem 33:1–15

    Google Scholar 

  34. 34.

    Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen Z-S (2017) Chem Soc Rev 46:5771–5804

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D (2019) Pharmaceuticals 12:1–46

    Google Scholar 

  36. 36.

    Maier L, Diel PJ (1996) Phosphorus. Sulfur, Silicon Relat Elem 115:273–300

    CAS  Google Scholar 

  37. 37.

    McDermott JX, White JF, Whitesides GM (1976) J Am Chem Soc 98:6521–6528

    CAS  Google Scholar 

  38. 38.

    Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Oxford UK (2016)

  39. 39.

    SHELXT, Sheldrick GM (2015) Acta Cryst A 71:3

    Google Scholar 

  40. 40.

    SHELXT, Sheldrick GM (2015) Acta Cryst C 71:3

    Google Scholar 

  41. 41.

    DIAMOND-4, Version 4.6.0: K. Brandenburg, Crystal Impact GbR, Bonn, Germany (2019)

  42. 42.

    Bracht K (2006) Boubakari, Grünert R, Bednarski PJ. Anticancer Drugs 17:41–51

    CAS  PubMed  Google Scholar 

  43. 43.

    Balakrishna MS, Suresh D, George PP, Mague JT (2006) Polyhedron 25:3215–3221

    CAS  Google Scholar 

  44. 44.

    Priya S, Balakrishna MS, Mague JT (2003) J Organomet Chem 679:116–124

    CAS  Google Scholar 

  45. 45.

    Starosta R, Bykowska A, Barys M, Wieliczko AK, Staroniewicz Z, Jezowska Bojczuk M (2011) Polyhedron 30:2914–2921

    CAS  Google Scholar 

Download references


This study was supported by Pamukkale University (Grant no: 2015FBE050).

Author information



Corresponding author

Correspondence to Mehmet Karakus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sari, O., Schüttler, A., Lönnecke, P. et al. Synthesis, structure and in vitro anticancer activity of ruthenium(II) and platinum(II) complexes with chiral aminophosphine ligands. Transit Met Chem 46, 299–305 (2021).

Download citation


  • Aminophosphine
  • Ruthenium
  • Platinum
  • Anticancer activity