Skip to main content
Log in

Synthesis and structural characterization of centrosymmetric multinuclear nickel(II) complexes with neutral tetradentate N6-ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A neutral tetradentate ligand L1 [L1 = 3,6-bis(pyrazol-1-yl)-pyridazine] reacts with Ni(ClO4)2·6H2O and undergoes counterion exchange with PF 6 to give di- and tetranuclear complexes [Ni2(L1)2(CH3CN)4](PF6)4·4H2O (1) and [Ni4(L1)4(µ-OH)4](ClO4)4·2H2O (2), respectively. The presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as base controls the nuclearity of the complex formation. Both complexes were structurally characterized by physicochemical and spectroscopic techniques. Their crystal structures revealed that both complexes are centrosymmetric and adopt slightly distorted octahedral geometry. Complex 1 crystallizes in monoclinic space group C2/c as the Ni(II) center is octahedrally bound to L1 in a trans-isomer arrangement. Complex 2 crystallizes in tetragonal space group I41/amd with four L1 and four hydroxy bridging ligands linked to Ni(II) center in cis-isomer arrangement. Cyclic voltammograms of complexes 1 and 2 were measured under Ar and CO2. Under CO2, the quasireversible peaks of both complexes become irreversible and a current enhancement occurs under reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hao X, Dou Y, Cao T, Qin L, Zhou Z, Yang L, Li D, Liu Q, Li Y, Zhang D (2020) Transit Met Chem 45(6):373–380

    Article  Google Scholar 

  2. Matsumoto T, Newton GN, Shiga T, Hayami S, Matsui Y, Okamoto H, Kumai R, Murakami Y, Oshio H (2014) Nat Commun 5(1):3865

    Article  CAS  PubMed  Google Scholar 

  3. Ismayilov RH, Wang W, Lee G, Yeh C, Hua S, Song Y, Rohmer MM, Bénard M, Peng S (2011) Angew Chem Int Ed 50(9):2045–2048

    Article  CAS  Google Scholar 

  4. Kanady JS, Tsui EY, Day MW, Agapie T (2011) Science 333(6043):733

    Article  CAS  PubMed  Google Scholar 

  5. Kondo M, Masaoka S (2016) Chem Lett 45(11):1220–1231

    Article  CAS  Google Scholar 

  6. Zhao Y, Zhang L, Li X, Shi Y, Ding R, Teng M, Zhang P, Cao C, Stang PJ (2019) Proc Natl Acad Sci USA 116(10):4090

    Article  CAS  PubMed  Google Scholar 

  7. Budagumpi S, Revankar VK (2010) Spectrochim Acta A Mol Biomol Spectrosc 77(1):184–188

    Article  PubMed  Google Scholar 

  8. Price JR, Lan Y, Brooker S (2007) Dalton Trans 18:1807–1820

    Article  Google Scholar 

  9. Gao H, Zhang Z-H, Jiang P, Li X-R (2006) Transit Met Chem 31(8):1088–1092

    Article  CAS  Google Scholar 

  10. Seifert S, Schmidt D, Shoyama K, Würthner F (2017) Angew Chem 129(26):7703–7708

    Article  Google Scholar 

  11. Tang L, Cheng M, Qian Z, Jia A, Zhang Q (2020) Z Naturforsch B 75(4):383–391

    Article  CAS  Google Scholar 

  12. Manzano BR, Jalón FA, Ortiz IM, Soriano ML, Gómez de la Torre F, Elguero J, Maestro MA, Mereiter K, Claridge TDW (2008) Inorg Chem 47(2):413–428

    Article  CAS  PubMed  Google Scholar 

  13. Peng MX, Li CJ, Wang J, Tong ML (2006) J Mol Struct 798(1):149–154

    Article  CAS  Google Scholar 

  14. Rosenberg L, Thompson LK, Gabe EJ, Lee FL (1986) J Chem Soc Dalton Trans 3:625–631

    Article  Google Scholar 

  15. Gupta G, Prasad KT, Das B, Yap GPA, Rao KM (2009) J Organomet Chem 694(16):2618–2627

    Article  CAS  Google Scholar 

  16. Gupta G, Prasad KT, Rao AV, Geib SJ, Das B, Rao KM (2010) Inorg Chim Acta 363(10):2287–2295

    Article  CAS  Google Scholar 

  17. Addison AW, Burke PJ (1981) J Heterocycl Chem 18(18):803–805

    Article  CAS  Google Scholar 

  18. Okamura M, Kondo M, Kuga R, Kurashige Y, Yanai T, Hayami S, Praneeth VKK, Yoshida M, Yoneda K, Kawata S, Masaoka S (2016) Nature 530(7591):465

    Article  CAS  PubMed  Google Scholar 

  19. Sheldrick G (2015) Acta Cryst A 71(1):3–8

    Article  Google Scholar 

  20. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  21. Sheldrick G (2015) Acta Cryst C 71(1):3–8

    Article  Google Scholar 

  22. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27(3):435

    Google Scholar 

  23. Read RJ, Kleywegt GJ (2009) Acta Cryst D 65(2):140–147

    Article  CAS  Google Scholar 

  24. Bansal D, Gupta R (2017) Dalton Trans 46(14):4617–4627

    Article  CAS  PubMed  Google Scholar 

  25. Mallinson PR, Koritsanszky T, Elkaim E, Li N, Coppens P (1988) Acta Cryst A 44(3):336–343

    Article  Google Scholar 

  26. Sung ND, Yun KS, Kim TY, Choi KY, Suh M, Kim JG, Suh IH, Chin J (2001) Inorg Chem Commun 4(8):377–380

    Article  CAS  Google Scholar 

  27. Garza-Ortiz A, Uma Maheswari P, Siegler M, Spek AL, Reedijk J (2013) New J Chem 37(11):3450–3460

    Article  CAS  Google Scholar 

  28. Wilkinson LA, Yue TTC, Massey E, White AJP, Long NJ (2019) Dalton Trans 48(1):72–78

    Article  CAS  Google Scholar 

  29. Strehler F, Hildebrandt A, Korb M, Rüffer T, Lang H (2014) Organometallics 33(16):4279–4289

    Article  CAS  Google Scholar 

  30. Nakamoto K (1988) Ber Bunsen Phys Chem 92(4):561

    Article  Google Scholar 

  31. Isaacs M, Canales JC, Riquelme A, Lucero M, Aguirre MJ, Costamagna J (2003) J Coord Chem 56(14):1193–1201

    Article  CAS  Google Scholar 

  32. Dai FR, Ye HY, Li B, Zhang LY, Chen ZN (2009) Dalton Trans 40:8696–8703

    Article  Google Scholar 

  33. Simón Manso E, Kubiak CP (2005) Organometallics 24(1):96–102

    Article  Google Scholar 

  34. Kelly CA, Mulazzani QG, Venturi M, Blinn EL, Rodgers MAJ (1995) J Am Chem Soc 117(17):4911–4919

    Article  CAS  Google Scholar 

  35. Cao LM, Huang HH, Wang JW, Zhong DC, Lu TB (2018) Green Chem 20(4):798–803

    Article  CAS  Google Scholar 

  36. Lieske LE, Rheingold Arnold L, Machan CW (2018) Sustain Energy Fuels 2(6):1269–1277

    Article  CAS  Google Scholar 

  37. Olu PY, Li Q, Krischer K (2018) Angew Chem Int Ed 57(45):14769–14772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.D.S. thanks the Institute for Molecular Science International Internship Program in Asia (IMS-IIPA) for an internship award. Support from the RU Grant (SATU) ST022-2020 from Universiti Malaya is acknowledged. The work was also supported by the IMRC/AISTDF/CRD/2018/000048 (ASEAN-India Collaborative R&D Scheme). We thank Kiyohiro Adachi from Institute of Physical and Chemical Research (RIKEN) for assistance with X-ray result interpretation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shigeyuki Masaoka or Pei Meng Woi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material:

Supplementary material 1 (DOCX 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, J.D., Lee, S.K., Chinapang, P. et al. Synthesis and structural characterization of centrosymmetric multinuclear nickel(II) complexes with neutral tetradentate N6-ligand. Transit Met Chem 46, 255–262 (2021). https://doi.org/10.1007/s11243-020-00441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00441-5

Navigation