Skip to main content
Log in

Spectral studies and crystal structures of molybdenum(VI) complexes containing pyridine or picoline as auxiliary ligands: interaction energy calculations and free radical scavenging studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three cis-MoO2 complexes [MoO2(CAB)(py)] (1), [MoO2(CAB)(3-pic)] (2) and [MoO2(CAB)(4-pic)] (3) which vary in the nature of the heterocyclic bases in the auxiliary coordination site derived from an ONO donor aroylhydrazone (H2CAB) have been synthesized and characterized by various physicochemical methods. The single-crystal X-ray diffraction studies reveal that the complexes adopt a distorted octahedral N2O4 coordination sphere around the Mo(VI) center in which the ONO donor atoms of hydrazone moiety and one oxido oxygen constitute the NO3 basal plane and the axial position by the other oxido oxygen and nitrogen atom of coordinated pyridine molecule in [MoO2(CAB)(py)] (1) or picoline molecule in [MoO2(CAB)(3-pic)] (2) and [MoO2(CAB)(4-pic)] (3). The hydrogen bonding interaction generates a two-dimensional supramolecular sheet-like architecture in [MoO2(CAB)(py)] (1) and [MoO2(CAB)(3-pic)] (2), whereas a three-dimensional network was observed in [MoO2(CAB)(4-pic)] (3). The interaction energy calculations reveal that the dispersion energy component dominates over other components and [MoO2(CAB)(3-pic)] (2) is found to be energetically more stable. Furthermore, the aroylhydrazone shows free radical scavenging activity, whereas the complexes are inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. Peng H, Peng X, Huang J, Huang A, Xu S, Zhou J, Huang S, Cai X (2020) J Mol struct 4:5. https://doi.org/10.1016/j.molstruc.2020.128138

    Article  CAS  Google Scholar 

  2. Bakir M, Conry R (2016) J Coord Chem 69:1244–1257

    Article  CAS  Google Scholar 

  3. Kuriakose D, Aravindakshan AA, Kurup MRP (2017) Polyhedron 127:84–96

    Article  CAS  Google Scholar 

  4. Asha TM, Kurup MRP (2020a) Transit Met Chem 45:467–476

    Article  CAS  Google Scholar 

  5. Nair RS, Kuriakose M, Somasudaram V, Shenoi V, Kurup MRP, Srinivas P (2014) Life Sci 116:90–97

    Article  CAS  Google Scholar 

  6. Bakale RP, Naik GN, Mangannavar CV, Muchchandi IS, Shcherbakov IN, Frampton C, Gudasi KB (2014) Eur J Med Chem 73:38–45

    Article  CAS  Google Scholar 

  7. Ebrahimipour SY, Sheikhshoaie I, Simpson J, Ebrahimnejad H, Dusek M, Kharazmi N, Eigner V (2016) New J Chem 40:2401–2412

    Article  Google Scholar 

  8. Rocha CS, Filho LFOB, de Souza AE, Diniz R, Denadai ÂML, Beraldo H, Teixeira LR (2019) Polyhedron 170:723–730

    Article  CAS  Google Scholar 

  9. He L-Y, Qiu XY, Cheng JY, Liu SJ, Wu SM (2018) Polyhedron 156:105–110

    Article  CAS  Google Scholar 

  10. Saif M, El-Shafiy HF, Mashaly MM, Eid MF, Nabeel AI, Fouad R (2016) J Mol Struct 1118:75–82

    Article  CAS  Google Scholar 

  11. Dinda R, Panda A, Banerjee A, Mohanty M, Pasayat S, Tiekink ERT (2020) Polyhedron. https://doi.org/10.1016/j.poly.2020.114533

  12. Asha TM, Kurup MRP (2018) Inorg Chim Acta 483:44–52

    Article  CAS  Google Scholar 

  13. Asha TM, Kurup MRP (2019) Polyhedron 169:151–161

    Article  CAS  Google Scholar 

  14. Mondal J, Manna AK, Patra GK (2018) Inorg Chim Acta 474:22–29

    Article  CAS  Google Scholar 

  15. Guerrero T, Lacroix PG, García-Ortega H, Morales-Saavedra OG, Agustin D, Farfán N (2016) Inorg Chim Acta 442:10–15

    Article  CAS  Google Scholar 

  16. Zhang WQ, Atkin AJ, Fairlamb IJ, Whitwood AC, Lynam JM (2011) Organometallics 30:4643–4654

    Article  CAS  Google Scholar 

  17. Anacona JR, Rincones M (2015) Spectrochim Acta A 141:169–175

    Article  CAS  Google Scholar 

  18. Fousiamol MM, Sithambaresan M, Smolenski VA, Jasinski JP, Kurup MRP (2018) Polyhedron 141:60–68

    Article  CAS  Google Scholar 

  19. Mangalam NA, Sivakumar S, Kurup MRP, Suresh E (2010) Spectrochim Acta A75:686–692

    Article  Google Scholar 

  20. Biswal D, Pramanik NR, Chakrabarti S, Drew MGB (2016) Inorg Chim Acta 451:92–101

    Article  CAS  Google Scholar 

  21. Wu CD, Ngo HL, Lin W (2004) Chem Commun 14:1588–1589.

    Article  Google Scholar 

  22. Evans OR, Ngo HL, Lin W (2001) J Am Chem Soc 123:10395–10396

    Article  CAS  Google Scholar 

  23. Cho SH, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) Chem Commun 2563–2565

  24. Maurya MR, Dhaka S, Avecilla F (2014) Polyhedron 67:145–159

    Article  CAS  Google Scholar 

  25. Bagherzadeh M, Zare M (2013) J Coord Chem 66:2885–2900

    Article  CAS  Google Scholar 

  26. Ebrahimipour SY, Khabazadeh H, Castro J, Sheikhshoaie I, Crochet A, Fromm KM (2015) Inorg Chim Acta 427:52–61

    Article  CAS  Google Scholar 

  27. Kuriakose D, Kurup MRP (2020) J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128188

  28. SMART and SAINT (1997) Area detector software package and SAX area detector integration program. Bruker Analytical X-ray, Madison

    Google Scholar 

  29. SADABS (1997) Area detector absorption correction program. Bruker Analytical X-ray, Madison

    Google Scholar 

  30. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  31. Farrugia LJ (2012) J Appl Cryst 45:849–854

    Article  CAS  Google Scholar 

  32. Brandenburg K (2011) Diamond version 3.2g, Crystal Impact GbRBonn, Germany

  33. MERCURY 3.10.1 Supplied with Cambridge Structural Database 2016 CCDC, Cambridge

  34. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17, University of Western Australia

  35. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  36. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 3814–3816

  37. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  38. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) IUCrJ 4:575–587

    Article  CAS  Google Scholar 

  39. Turner MJ, Grabowsky S, Jayatilaka D, Spackman MA (2014) J Phys Chem Lett 5:4249–4255

    Article  CAS  Google Scholar 

  40. Kuriakose D, Kurup MRP (2019) Polyhedron 170:749–761

    Article  CAS  Google Scholar 

  41. Kuriakose D, Kurup MRP (2020) J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127467

  42. Mangalam NA, Kurup MRP (2011) Spectrochim Acta A78:926–934

    Article  Google Scholar 

  43. Raj BNB, Kurup MRP, Suresh E (2008) Spectrochim Acta A71:1253–1260

    Google Scholar 

  44. Mangalam NA, Sheeja SR, Kurup MRP (2010) Polyhedron 29:3318–3323

    Article  CAS  Google Scholar 

  45. Harej M, Dolenc D (2007) J Org Chem 72:7214–7221

    Article  CAS  Google Scholar 

  46. Belkheiri N, Bouguerne B, Bedos-Belval F, Duran H, Bernis C, Salvayre R, Nègre-Salvayre A, Baltas M (2010) Eur J Med Chem 45:3019–3026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DK thanks the University Grants Commission, New Delhi, India, for the award of a Senior Research Fellowship (F.17-45/2008(SA-1) dated 11.08.2014). The authors are thankful to the Sophisticated Analytical Instrumentation Facility, Cochin University of Science and Technology, Kochi, India, for elemental analyses, 1H-NMR spectra and single-crystal X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Prathapachandra Kurup.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriakose, D., Kurup, M.R.P. Spectral studies and crystal structures of molybdenum(VI) complexes containing pyridine or picoline as auxiliary ligands: interaction energy calculations and free radical scavenging studies. Transit Met Chem 46, 241–253 (2021). https://doi.org/10.1007/s11243-020-00440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00440-6

Navigation