Synthesis, crystal structures and magnetic properties of three porous coordination polymers based on a semirigid tripodal carboxylate ligand

Abstract

Three new coordination polymers, namely, {[Cu2(bcpmba)(μ4-OH)]·2H2O}n (1), [Mn(Hbcpmba)]n (2), and [Co2(bcpmba)(μ3-OH)·H2O]n (3) (H3bcpmba = 3,5-bi(4-carboxy-phenylene-methylene-oxy)-benzoic acid) have been prepared under solvothermal conditions. The complexes were characterized by physico-chemical and spectroscopic methods. All of the compounds 1–3 contain one-dimensional (1D) chains extended via the bcpmba3− bridge to generate 2D porous layers which are further connected by bcpmba3− ligands to form 3D porous coordination polymers. The result shows configurations of the ligand have an important influence on the structure. Magnetic susceptibility measurements indicate that compounds 1–3 exhibit antiferromagnetic coupling between adjacent metal ions, with the corresponding J value of − 2.76 cm−1 for compound 2.

Graphic abstract

Three porous coordination polymers, namely, {[Cu2(bcpmba)(μ4-OH)]·2H2O}n (1), [Mn(Hbcpmba)]n (2) and [Co2(bcpmba)(μ3-OH)·H2O]n (3) have been synthesized by employing a semi-rigid aromatic multicarboxylate acid (3,5-bi(4-carboxy-phenylene-methylene-oxy)-benzoic acid, H3bcpmba) under solvothermal conditions. Porous coordination polymers 13 consisted of 1D chain extended via the bridge of bcpmba3– to generate 2D porous layers and further connected by bcpmba3– to provide a 3D porous frameworks. The results reveal that different coordination modes of the ligand play an important role in the self-assembly processes to form metal-organic frameworks with different structures. Moreover, compounds 13 exhibited antiferromagnetic properties.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Zhang WH, Ren ZG, Lang JP (2016) Chem Soc Rev 45:4995–5019

    CAS  Article  Google Scholar 

  2. 2.

    Liu D, Lang JP, Abrahams BF (2011) J Am Chem Soc 133(29):11042–11045

    CAS  Article  Google Scholar 

  3. 3.

    Wan XY, Jiang FL, Chen L, Pan J, Zhou K, Su KZ, Pang JD, Lyu GX, Hong MC (2015) CrystEngComm 17:3829–3837

    CAS  Article  Google Scholar 

  4. 4.

    Liu PP, Wang CY, Zhang M, Song XQ (2017) Polyhedron 129:133–140

    CAS  Article  Google Scholar 

  5. 5.

    Yang ZX, Qian Y, Yu JW, Zhai L, Zhang WW, Ren XM (2018) RSC Adv 8:25489–25499

    CAS  Article  Google Scholar 

  6. 6.

    Yan YT, Liu J, Yang GP, Zhang F, Fan YK, Zhang WY, Wang YY (2018) CrystEngComm 20:477–486

    CAS  Article  Google Scholar 

  7. 7.

    Hu KQ, Zhu LZ, Wang CZ, Mei L, Liu YH, Gao ZQ, Chai ZF, Shi WQ (2016) Cryst Growth Des 16:4886–4896

    CAS  Article  Google Scholar 

  8. 8.

    Gu J, Liang X, Cai Y, Wu J, Shi Z, Kirillov A (2017) Dalton Trans 46:10908–10925

    CAS  Article  Google Scholar 

  9. 9.

    Zou RQ, Zhong RQ, Du M, Kiyobayashi T, Xu Q (2007) Chem Commun 24:2467–2469

    Article  Google Scholar 

  10. 10.

    An J, Geib SJ, Rosi NL (2010) J Am Chem Soc 132:38–39

    CAS  Article  Google Scholar 

  11. 11.

    Liu TF, Lü J, Guo Z, Proserpio DM, Cao R (2010) Cryst Growth Des 10:1489–1491

    CAS  Article  Google Scholar 

  12. 12.

    Lin ZJ, Liu TF, Xu B, Han LW, Huang YB, Cao R (2011) CrystEngComm 13:3321–3324

    CAS  Article  Google Scholar 

  13. 13.

    Huang WH, Yang GP, Chen J, Chen X, Zhang CP, Wang YY, Shi QZ (2013) Cryst Growth Des 13:66–73

    CAS  Article  Google Scholar 

  14. 14.

    Wei XH, Yang LY, Liao SY, Zhang M, Tian JL, Du PY, Gu W, Liu X (2014) Dalton Trans 43:5793–5800

    CAS  Article  Google Scholar 

  15. 15.

    SAINT, Version 6.02a; Bruker AXS Inc.: Madison, WI, 2002

  16. 16.

    Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) J Appl Cryst 48:3–10

    CAS  Article  Google Scholar 

  17. 17.

    Sheldrick GM (2008) Acta Cryst A 64:112–122

    CAS  Article  Google Scholar 

  18. 18.

    Sheldrick GM (2015) Acta Cryst A 71:3–8

    Article  Google Scholar 

  19. 19.

    Sluis PVD, Spek AL (1990) Acta Cryst A 46:194–201

    Article  Google Scholar 

  20. 20.

    Senchyk GA, Lysenko AB, Krautscheid H, Rusanov EB, Chernega AN, Kramer KW, Liu SX, Decurtins S, Domasevitch KV (2013) Inorg Chem 52:863–872

    CAS  Article  Google Scholar 

  21. 21.

    Shao YL, Cui YH, Gu JZ, Kirillov AM, Wu J, Wang YW (2015) Rsc Adv 5:87484–87495

    CAS  Article  Google Scholar 

  22. 22.

    Ding R, Huang C, Lu J, Wang J, Song C, Wu J, Hou H, Fan Y (2015) Inorg Chem 54:1405–1413

    CAS  Article  Google Scholar 

  23. 23.

    Zhu Z, Bai YL, Zhang L, Sun D, Fang J, Zhu S (2014) Chem Commun 50:14674–14677

    CAS  Article  Google Scholar 

  24. 24.

    Deng DS, Liu LL, Ji BM, Yin GJ, Du CX (2012) Cryst Growth Des 12:5338–5348

    CAS  Article  Google Scholar 

  25. 25.

    Fisher ME (1964) Am J Phys 32:343–346

    Article  Google Scholar 

  26. 26.

    Han ML, Bai L, Tang P, Wu XQ, Wu YP, Zhao J, Li DS, Wang YY (2015) Dalton Trans 44:14673–14685

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the start-up foundation of Sichuan University of Science and Engineering (No. 2015RC29).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanchun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yin, M., Chen, S. et al. Synthesis, crystal structures and magnetic properties of three porous coordination polymers based on a semirigid tripodal carboxylate ligand. Transit Met Chem 46, 167–175 (2021). https://doi.org/10.1007/s11243-020-00433-5

Download citation