Skip to main content
Log in

A copper-based coordination polymer formed through synergistic bridging of 1,2,4-triazole and acetate anions: synthesis, crystal structure and magnetic properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A Cu(II) coordination polymer, [Cu2(pztrz)2(μ-CH3COO)(CH3COO)]·3H2O (1), derived from mono-substituted 1,2,4-triazole derivative 3-(pyrazinyl)-1,2,4-triazole (Hpztrz) is isolated and structurally characterized. X-ray structural analysis shows that Hpztrz ligands and acetate anions demonstrate different coordination modes in complex 1. The two Cu(II) ions are bridged by the 1,2,4-triazole ring of Hpztrz to form a dinuclear unit, which is further linked by two bridging acetate anions to form a tetranuclear Cu4 unit. Interestingly, each Cu4 unit is connected to another four Cu4 units through the outer pyrazinyl of Hpztrz, resulting in a two-dimensional (2D) layer structure. Consecutive layers are further packed into three-dimensional (3D) structures through interlayer hydrogen-bonding interactions. Furthermore, variable-temperature magnetic susceptibility studies reveal that the antiferromagnetic interactions are mediated through 1,2,4-triazole-N1,N2 bridges and acetate bridges with coupling constants of J1 =  − 69.98 cm−1 and J2 =  − 2.15 cm−1.

Graphic abstract

Synergistic co-coordination of 1,2,4-triazole and acetate ions with Cu(II) ions led to a dinuclear unit, then to a Cu4 unit and finally to a 2D layer. Consecutive layers are further packed into a 3D framework through interlayer hydrogen-bonding interactions. Furthermore, variable-temperature magnetic susceptibility studies indicated the existence of antiferromagnetic coupling between the Cu(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaworotko MJ (2010) J Am Chem Soc 132:7821–7821

    Article  CAS  Google Scholar 

  2. Caskey SR, Matzger AJ (2008) Inorg Chem 47:7942–7944

    Article  CAS  Google Scholar 

  3. Chelebaeva E, Larionova J, Guari Y, Ferreira RAS, Carlos LD, Paz FAA, Trifonov A, Guérin C (2009) Inorg Chem 48:5983–5995

    Article  CAS  Google Scholar 

  4. Srivastava S, Gupta BK, Gupta R (2017) Cryst Growth Des 17:3907–3916

    Article  CAS  Google Scholar 

  5. Wang Y, Bao S, Li R, Zhao G, Wang Z, Zhao Z, Chen Q (2015) ACS Appl Mater Inter 7:2088–2096

    Article  CAS  Google Scholar 

  6. Zhao XQ, Zhao B, Ma Y, Shi W, Cheng P, Jiang ZH, Liao DZ, Yan SP (2007) Inorg Chem 46:5832–5834

    Article  CAS  Google Scholar 

  7. Shi WJ, Du LY, Yang HY, Zhang K, Hou L, Wang YY (2017) Inorg Chem 56:10090–10098

    Article  CAS  Google Scholar 

  8. Zhai QG, Bai N, Li S, Bu X, Feng P (2015) Inorg Chem 54:9862–9868

    Article  CAS  Google Scholar 

  9. Lin JB, Zhang JP, Zhang WX, Xue W, Xue DX, Chen XM (2009) Inorg Chem 48:6652–6660

    Article  CAS  Google Scholar 

  10. Xu Z, Li H, Li A, Meng W, Hou H, Fan Y (2013) Inorg Chem Commun 36:126–129

    Article  CAS  Google Scholar 

  11. Liu H, Gao G, Liu J, Bao F, Wei Y, Wang H (2019) CrystEngComm 21:2576–2584

    Article  CAS  Google Scholar 

  12. Liu HY, Wang K, Sun Y, Wang R, Wang HY (2020) Inorg Chem 59:9452–9460

    Article  CAS  Google Scholar 

  13. Liu HY, Liu J, Gao GM, Wang HY (2018) Inorg Chem 57:10401–10409

    Article  CAS  Google Scholar 

  14. Liu H, Meng F, Lu Z, Bai J (2016) CrystEngComm 18:9003–9006

    Article  CAS  Google Scholar 

  15. Liu H, Wang Q, Zhang M, Jiang J (2015) CrystEngComm 17:4793–4798

    Article  CAS  Google Scholar 

  16. Liu HY, Chen LF, Wang HY, Wan Y, Wu H (2016) RSC Adv 6:94833–94839

    Article  CAS  Google Scholar 

  17. Liu HY, Gao GM, Bao FL, Wei YH, Wang HY (2019) Polyhedron 160:207–212

    Article  CAS  Google Scholar 

  18. Liu HY, Gao GM, Liu J, Wang HY (2018) Polyhedron 152:11–16

    Article  CAS  Google Scholar 

  19. Liu J, Wei Y, Bao F, Li G, Liu H, Wang H (2019) Polyhedron 169:58–65

    Article  CAS  Google Scholar 

  20. Wang HY, Liu HY (2017) Trans Met Chem 42:165–173

    Article  CAS  Google Scholar 

  21. Tang K, Yun R, Lu Z, Du L, Zhang M, Wang Q, Liu H (2013) Crystal Growth Des 13:1382–1385

    Article  CAS  Google Scholar 

  22. Zhang M, Wang Q, Lu Z, Liu H, Liu W, Bai J (2014) CrystEngComm 16:6287–6290

    Article  CAS  Google Scholar 

  23. Boudreaux EA, Mulay LN (1976) Theory and application of molecular paramagnetism. Wiley, New York

    Google Scholar 

  24. Bruker AXS Inc (2003) SAINT (Version 6.45) and SADABS (Version 2.10); Bruker AXS Inc Madison, WI

  25. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  26. Van Der Sluis P, Spek AL (1990) Acta Crystallogr Sect A 46:194–201

    Article  Google Scholar 

  27. Yang F, Liang B, Zhang JH, Wu WH, Zheng SQ, Mao YY, Chen JQ, Cao JX, Zhu GZ (2018) Transit Met Chem 43:211–220

    Article  CAS  Google Scholar 

  28. Gusev AN, Shul’gin VF, Beyjyyev E, Alexandrov GG, Eremenko IL, Linert W (2015) Polyhedron 85:525–529

    Article  CAS  Google Scholar 

  29. Thompson LK (2002) Coord Chem Rev 233–234:193–206

    Article  Google Scholar 

  30. Zhu HL, Zheng LM, Fu DG, Huang P, Bu WM, Tang WX (1999) Inorg Chim Acta 287:52–6011

    Article  CAS  Google Scholar 

  31. Zhu HL, Cheng DY, Zheng YQ (2012) Inorg Chim Acta 388:37–45

    Article  CAS  Google Scholar 

  32. Mohanta S, Nanda KK, Werner R, Haase W, Mukherjee AK, Dutta SK (1997) Nag K 36:4656–4664

    CAS  Google Scholar 

  33. Du M, Bu XH, Huang Z, Chen ST, Guo YM (2003) Inorg Chem 42:552–559

    Article  CAS  Google Scholar 

  34. Kavlakoglu E, Elmali A, Elerman Y, Svoboda I (2002) Polyhedron 21:1539–1545

    Article  CAS  Google Scholar 

  35. Acevedo-Cháveza R, Costas ME (1999) Polyhedron 18:1549–1553

    Article  Google Scholar 

  36. Feng X, Wang LY, Zhao JS, Liu B, Wang JG, Shi XG (2009) Inorg Chim Acta 362:5127–5132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Jiangsu Students’ Innovation and Entrepreneurship Training Program (No. 201910320016Z), the Natural Science Foundation of Xuzhou City (KC19050), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) and PAPD of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Ying Wang or Hui Yan Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, L., Dong, H., Chen, D.N. et al. A copper-based coordination polymer formed through synergistic bridging of 1,2,4-triazole and acetate anions: synthesis, crystal structure and magnetic properties. Transit Met Chem 46, 57–63 (2021). https://doi.org/10.1007/s11243-020-00421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00421-9

Navigation