Skip to main content
Log in

Rhodium(III) complexes of 1-Alkyl-2-{(o-thioalkyl) phenylazo}imidazoles: synthesis, structure, spectral characterization, DNA binding study and DFT calculation

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The Rh(III) complexes of 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazole (SRaaiNR′, 1; R = R′= Me (a); R = Me, R′= Et (b); R = Et, R′= Me (c); R = R′= Et (d)), [Rh(SRaaiNR′)(PPh3)Cl2](ClO4) (2) have been synthesized. The complexes have been characterized by physicochemical and spectroscopic methods. The single-crystal X-ray diffraction study authenticates the structure of [Rh(SMeaaiNEt)(PPh3)Cl2](ClO4) (2b). The DNA binding ability of the complexes has been investigated by electronic absorption and fluorescence spectroscopic methods. Density functional theory computation technique has been used to enlighten the electronic structures and their spectral properties.

Graphic abstract

1-Alkyl-2-{(o-thioalkyl)phenylazo}imidazole complexes of Rh(III), [Rh(SRaaiNR′)(PPh3)Cl2](ClO4)](2) are synthesized and characterized. [Rh(SMeaaiNEt)(PPh3)Cl2](ClO4) (2b) is characterized by single-crystal X-ray diffraction study. Ligand acts as tridentate N(imidazole), N(azo) and S(thioether) donor centers. The DNA binding ability of the complexes is investigated by electronic absorption and fluorescence spectroscopic methods. The electronic structure and observed electronic transitions are interpreted by DFT and TDDFT computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yousefi R, Aghevlian S, Mokhtari F, Samouei H, Rashidi M, Nabavizadeh SM, Tavaf Z, Pouryasin Z, Niazi A, Faghihi R (2012) Appl Biochem Biotech 167(4):861–872

    Article  CAS  Google Scholar 

  2. Kostova I (2006) Curr Med Chem 13(9):1085–1107

    Article  CAS  PubMed  Google Scholar 

  3. Muhammad N, Sadia N, Zhu C, Luo C, Guo Z, Wang X (2017) Chem Comm 53(72):9971–9974

    Article  CAS  PubMed  Google Scholar 

  4. Nagaj J, Kołkowska P, Bykowska A, Komarnicka UK, Kyzioł A, Jeżowska-Bojczuk M (2015) Med Chem Res 24:115–123

    Article  CAS  PubMed  Google Scholar 

  5. Heydari M, Moghadam ME, Tarlani A, Farhangian H (2017) Appl Biochem Biotech 182(1):110–127

    Article  CAS  Google Scholar 

  6. Gasser G, Ott I, Metzler-Nolte N (2011) J Med Chem 54(1):3–25

    Article  CAS  PubMed  Google Scholar 

  7. Johnstone TC, Suntharalingam K, Lippard SJ (2016) Chem Rev 116(5):436–3486

    Article  Google Scholar 

  8. Mukhopadhyay S, Gupta RK, Paitandi RP, Rana NK, Sharma G, Koch B, Rana LK, Hundal MS, Pandey DS (2015) Organometallics 34(18):4491–4506

    Article  CAS  Google Scholar 

  9. Patel M, Chhasatia M, Bhatt B (2011) Med Chem Res 20(2):220–230

    Article  CAS  Google Scholar 

  10. Arthi P, Shobana S, Srinivasan P, Mitu L, Rahiman AK (2015) Spectrochim Acta A 143:49–58

    Article  CAS  Google Scholar 

  11. Kostrhunova H, Florian J, Novakova O, Peacock AFA, Sadler PJ, Brabec V (2008) J Med Chem 51:3635–3643

    Article  CAS  PubMed  Google Scholar 

  12. Cutillas N, Yellol GS, de Haro C, Vicente C, Rodríguez V, Ruiz J (2013) Coord Chem Rev 257:2784–2797

    Article  CAS  Google Scholar 

  13. Sathyadevi P, Krishnamoorthy P, Butorac RR, Cowley AH, Dharmaraj N (2012) Metallomics 4:498–511

    Article  CAS  PubMed  Google Scholar 

  14. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) Br J Cancer 86:1652–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loughrey BT, Healy PC, Parsons PG, Williams ML (2008) Inorg Chem 47:8589–8591

    Article  CAS  PubMed  Google Scholar 

  16. Mendoza-Ferri MG, Hartinger CG, Mendoza MA, Groessl M, Egger AE, Eichinger RE, Mangrum JB, Farrell NP, Maruszak M, Bednarski PJ (2009) J Med Chem 52:916–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petrini A, Pettinari R, Marchetti F, Pettinari C, Therrien B, Galindo AN, Scopelliti R, Riedel T, Dyson PJ (2017) Inorg Chem 56:13600–13612

    Article  CAS  PubMed  Google Scholar 

  18. Payne R, Govender P, Therrien B, Clavel CM, Dyson PJ, Smith GS (2013) J Organomet Chem 729:20–27

    Article  CAS  Google Scholar 

  19. Almodares Z, Lucas SJ, Crossley BD, Basri AM, Pask CM, Hebden AJ, Phillips RM, McGowan PC (2014) Inorg Chem 53:727–736

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee D, Ray U, Jasimuddin S, Liou J-C, Lu T-H, Sinha C (2006) Polyhedron 25:1299–1306

    Article  CAS  Google Scholar 

  21. Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith PWG (1996) A text book of practical organic chemistry, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  22. Sheldrick GM (1997) SHELXS-97. Program for the solution of crystal structure. University of Gottingen, Gottingen

    Google Scholar 

  23. Farrugia LJ (1997) ORTEP-3 for windows. J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  24. Spek AL (1999) PLATON. Molecular Geometry Program, University of Utrecht, Utrecht

    Google Scholar 

  25. Schlegel HB et al (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford

  26. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  27. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  28. EMSL, basis set library available http://www.emsl.pnl.gov/forms/basisform.html

  29. Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  30. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  31. Valeur B (2001) Molecular fluorescence. Principles and applications. Wiley, Weinheim

    Book  Google Scholar 

  32. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  CAS  PubMed  Google Scholar 

  33. Sardar D, Datta P, Saha R, Raghavaiah P, Sinha C (2013) J Organomet Chem 732:109–115

    Article  CAS  Google Scholar 

  34. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058

    Article  CAS  Google Scholar 

  35. García-Giménez JL, González-Álvarez M, Liu-González Malva, Macías B, Joaquín Borrás J, Alzuet G (2009) J Inorg Biochem 103:923–934

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the University Grant Commission (Reference No. F.: PSW-044/14-15 (ERO)), New Delhi, is gratefully acknowledged. Author P. Datta is thankful to TEQIP Phase-II, RCC Institute of Information Technology for financial support. We are also thankful to Dr. Suvendu Maity, D. S. Kothari Post Doctoral Fellow, Jadavpur University, for his support in X-ray structure analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibakar Sardar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2020_414_MOESM1_ESM.doc

Supplementary material includes the experimental section, energy and composition of the selected frontier molecular orbitals calculated by the DFT, electronic transition data from the TDDFT calculation, 1H NMR and IR spectra, and some figures related to the DNA binding study (DOC 12557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, D., Datta, P. & Sinha, C. Rhodium(III) complexes of 1-Alkyl-2-{(o-thioalkyl) phenylazo}imidazoles: synthesis, structure, spectral characterization, DNA binding study and DFT calculation. Transit Met Chem 45, 595–603 (2020). https://doi.org/10.1007/s11243-020-00414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00414-8

Navigation