Skip to main content
Log in

Catalytic oxyfunctionalization of saturated hydrocarbons by non-heme oxo-bridged diiron(III) complexes: role of acetic acid on oxidation reaction

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Oxo-bridged diiron(III) complexes [Fe2O(L1)2(H2O)2](ClO4)4 (1) and [Fe2O(L2)2(H2O)2](ClO4)4 (2), where L1 and L2 are tetradentate N-donor N,N′-bis(2-pyridylmethyl)-1,2-cyclohexanediamine and N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine respectively, have been isolated as synthetic models of non-heme iron oxygenases and characterized by physicochemical and spectroscopic methods. Both the complexes have been studied as catalysts for the oxyfunctionalization of saturated hydrocarbons using green hydrogen peroxide (H2O2) as oxidant under mild conditions. The selectivity (A/K) and regioselectivity (3°/2°) in oxidative C–H functionalization of alkanes suggests the involvement of metal-based intermediate in the oxygenation reaction. The catalytic efficiency is found to be strongly dependent on the presence of acetic acid. Remarkable increase in conversion and selectivity favoring the formation of alcohols in the oxidation of cyclohexane and cyclooctane and exclusive hydroxylation of adamantane with drastic enhancement of regioselectivity has been achieved by the addition of acetic acid in the presence of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Feig AL, Lippard SJ (1994) Chem Rev 94:759–805

    Article  CAS  Google Scholar 

  2. Sun CL, Li BJ, Shi ZJ (2011) Chem Rev 111:1293–1314

    Article  CAS  Google Scholar 

  3. Newhouse T, Baran PS (2011) Angew Chem Int Ed 50:3362–3374

    Article  CAS  Google Scholar 

  4. Shang R, Ilies L, Nakamura E (2017) Chem Rev 117:9086–9139

    Article  CAS  Google Scholar 

  5. Kal S, Xu S, Que L Jr (2020) Angew Chem Int Ed 59:7332–7349

    Article  CAS  Google Scholar 

  6. Costas M, Mehn MP, Jensen MP, Que L (2004) Chem Rev 104:939–986

    Article  CAS  Google Scholar 

  7. Jasniewski AJ, Que L Jr (2018) Chem Rev 118:2554–2592

    Article  CAS  PubMed Central  Google Scholar 

  8. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ (2001) Angew Chem Int Ed 40:2782–2807

    Article  CAS  Google Scholar 

  9. Banerjee R, Jones JC, Lipscomb JD (2019) Annu Rev Biochem 88:409–431

    Article  CAS  Google Scholar 

  10. Wang VC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Chem Rev 117:8574–8621

    Article  CAS  Google Scholar 

  11. Jordan A, Reichard P (1998) Annu Rev Biochem 67:71–98

    Article  CAS  Google Scholar 

  12. Logan DT, Sxu XD, Aberg A, Rengnstrom K, Hajdu J, Eklund H, Nordlund P (1996) Structure 4:1053–1064

    Article  CAS  Google Scholar 

  13. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL (1999) Structure 7:757–767

    Article  CAS  Google Scholar 

  14. Schenk G, Mitić N, Hanson GR, Comba P (2013) Coord Chem Rev 257:473–482

    Article  CAS  Google Scholar 

  15. Kim J, Harrison RG, Kim C, Que L (1996) J Am Chem Soc 118:4373–4379

    Article  CAS  Google Scholar 

  16. Leising RA, Kim J, Perez MA, Que L Jr (1993) J Am Chem Soc 115:9524–9530

    Article  CAS  Google Scholar 

  17. Buchanan RM, Chen S, Richardson JF, Bressan M, Forti L, Morvillo A, Fish RH (1994) Inorg Chem 33:3208–3209

    Article  CAS  Google Scholar 

  18. Tanase S, Foltz C, Gelder R, Hage R, Bouwman E, Reedijk J (2005) J Mol Catal A: Chem 225:161–167

    Article  CAS  Google Scholar 

  19. Menage S, Vincent JM, Lambeaux C, Chottard G, Grand A, Fontecave M (1993) Inorg Chem 32:4766–4773

    Article  CAS  Google Scholar 

  20. Duboc-Toia C, Menage S, Ho RYN, Que L Jr, Lambeaux C, Fontecave M (1999) Inorg Chem 38:1261–1268

    Article  CAS  Google Scholar 

  21. Wang X, Wang S, Li L, Sundberg EB, Gacho GP (2003) Inorg Chem 42:7799–7808

    Article  CAS  Google Scholar 

  22. Li F, Wang M, Ma C, Gao A, Chen H, Sun L (2006) Dalton Trans, 2427–2434

  23. Menage S, Wilkinson EC, Que L Jr, Fontecave M (1995) Angew Chem Int Edn Engl 34:203–205

    Article  CAS  Google Scholar 

  24. Agarwalla US (2020) Rasayan J Chem 13:960–967

    Article  Google Scholar 

  25. Meckmouche Y, Menage S, Toia-Duboc C, Fontecave M, Galey JB, Lebrun C, Pecaut J (2001) Angew Chem Int Ed 40:949–952

    Article  Google Scholar 

  26. Costas M, Chen K, Que L Jr (2000) Coord Chem Rev 200:517–544

    Article  Google Scholar 

  27. He Y, Gorden JD, Goldsmith CR (2011) Inorg Chem 50:12651–12660

    Article  CAS  Google Scholar 

  28. Esmelindro MC, Oestreicher EG, Alvarez HM, Dariva C, Egues SMS, Fernandes C, Bortoluzzi AJ, Drago V, Antunes OAC (2005) J Inorg Biochem 99:2054–2061

    Article  CAS  Google Scholar 

  29. Hazell A, Jensen KB, MacKenzie CJ, Toftlund H (1994) Inorg Chem 33:3127–3134

    Article  CAS  Google Scholar 

  30. Reem RC, McCormick JM, Richardson DE, Devlin FJ, Stephens PJ, Musselman RL, Solomon EI (1989) J Am Chem Soc 111:4688–4704

    Article  CAS  Google Scholar 

  31. Sun H, Wang M, Li F, Li P, Zhao Z, Sun L (2008) Appl Organometal Chem 22:573–576

    Article  CAS  Google Scholar 

  32. Do LH, Xue G, Que L Jr, Lippard SJ (2012) Inorg Chem 51:2393–2402

    Article  CAS  PubMed Central  Google Scholar 

  33. Barton DHR, Doller M (1992) Acc Chem Res 25:504–512

    Article  CAS  Google Scholar 

  34. Fish RH, Konings MS, Oberhausen KJ, Fong RH, Yu WM, Christou G, Vincent JB, Coggin DK, Buchanan RM (1991) Inorg Chem 30:3002–3006

    Article  CAS  Google Scholar 

  35. Menage S, Vincent JM, Lambeaux C, Fontecave M (1996) J Mol Catal A: Chem 113:61–75

    Article  CAS  Google Scholar 

  36. Kojima T, Leising RA, Yan S, Que L Jr (1993) J Am Chem Soc 115:11328–11335

    Article  CAS  Google Scholar 

  37. Kryatov SV, Rybak-Akimova EV, Schindler S (2005) Chem Rev 105:2175–2226

    Article  CAS  Google Scholar 

  38. van den Berg TA, de Boer JW, Browne WR, Roelfes G, Feringa BL (2004) Chem Commun 2550–2551

  39. Visvaganesan K, Suresh E, Palaniandavar M (2009) Dalton Trans 3814–3823

  40. Que L Jr, Tolman WB (2008) Nature 455:333–340

    Article  CAS  Google Scholar 

  41. Balleste RM (2007) Que Jr L 129:15964–15972

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University Grants Commission [No. F.PSW-197/15-16 (ERO)]. The author is grateful to Dr. P. Bandyapadhyay for his assistance and kind cooperation. The author also expresses his sincere thanks to the Department of Chemistry, University of North Bengal for providing instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Sankar Agarwalla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwalla, U.S. Catalytic oxyfunctionalization of saturated hydrocarbons by non-heme oxo-bridged diiron(III) complexes: role of acetic acid on oxidation reaction. Transit Met Chem 45, 583–588 (2020). https://doi.org/10.1007/s11243-020-00412-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00412-w

Navigation