Skip to main content
Log in

Crystallographic and computational study of the structure of copper(II) 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The reaction of M(OAc)2 with 2,2′-bis(2-hydroxybenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl (H2L1) allows the synthesis of 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl complexes of Cu(II) (CuL1), Co(II) (CoL1) and Ni(II) (NiL1) that were characterized by elemental analysis, FTIR spectroscopy and for CuL1 also by X-ray crystallography verifying a tetradentate binding mode of L1 via an (ONNO) motif of the two phenolic oxygen atoms and two azomethine nitrogen atoms. Recrystallization from a solvent mixture of dichloromethane and methanol promotes the formation of methanol adducts. Different binding modes of the methanol–complex were investigated using density functional theory calculations and binding energies, and thermodynamic data of the interaction are reported. The results show that the favored interaction occurs when the methanol molecule acts as a Lewis acid weakly binding via an O–H···O hydrogen bridge to a phenoxide moiety leading to an elongation of the respective M–O bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abd-Elzaher MM (2001) J Chin Chem Soc 48:153–158

    CAS  Google Scholar 

  2. Ramesh R, Suganthy PK, Natarajan K (1996) Synth Inorg Met Org Chem 26:47–60

    CAS  Google Scholar 

  3. Xinde Z, Chenggang W, Zhiping L, Zhifeng L, Zhshen W (1996) Synth Inorg Met Org Chem 26:955–966

    Google Scholar 

  4. Siddiqui RA, Raj P, Saxena AK (1996) Synth Inorg Met Org Chem 26:1189–1203

    CAS  Google Scholar 

  5. Ghose BN, Lasisi KM (1986) Synth Inorg Met Org Chem 16:1121–1125

    CAS  Google Scholar 

  6. Yuan R, Chai Y, Liu D, Gao D, Li J, Yu R (1993) Anal Chem 65:2572–2575

    CAS  Google Scholar 

  7. Jha NK, Joshi DM (1984) Synth Inorg Met Org Chem 14:455–465

    CAS  Google Scholar 

  8. Ohashi Y (1997) Bull Chem Soc Jpn 70:1319–1324

    CAS  Google Scholar 

  9. Wong YL, Ma JF, Law WF, Yan Y, Wong WT, Zhang ZY, Mak TC, Ng DK (1999) Eur J Inorg Chem 1999:313–321

    Google Scholar 

  10. Koksal H, Dolaz M, Tumer M, Serin S (2001) Synth Inorg Met Org Chem 31:1141–1162

    CAS  Google Scholar 

  11. Boucher LJ, Coe CG (1976) Inorg Chem 15:1334–1340

    CAS  Google Scholar 

  12. Atkins R, Bewer G, Kokot E, Mockler GM, Sinn E (1985) Inorg Chem 24:127–134

    CAS  Google Scholar 

  13. Pui A, Policar C, Mahy JP (2007) Inorg Chim Acta 360:2139–2144

    CAS  Google Scholar 

  14. Jia HP, Li W, Ju ZF, Zhang J (2007) J Mol Struct 833:49–52

    CAS  Google Scholar 

  15. El-Saeed SM, Farag RK, Abdul-Raouf ME, Abdel-Azim AAA (2008) Int J Polym Mater 57:860–877

    CAS  Google Scholar 

  16. Nishat N, Parveen S, Dhyani S, Asma A, Ahamad T (2009) J Appl Polym Sci 113:1671–1679

    CAS  Google Scholar 

  17. Singh DP, Kumar R, Mehani R, Verma SK (2006) J Serb Chem Soc 71:939–944

    CAS  Google Scholar 

  18. Deepa NT, Madhu PK, Krishnan R (2005) Synth React Inorg Met Org Chem 35:883–888

    CAS  Google Scholar 

  19. Chohan ZH, Pervez H, Rauf A, Khan KM, Supwern CT (2002) J Enzyme Inhib Med Chem 17:117–122

    CAS  PubMed  Google Scholar 

  20. Karvembu R, Natarajan K (2002) Polyhedron 21:219–223

    CAS  Google Scholar 

  21. Ali SA, Soliman AA, Aboaly MM, Ramadan RM (2002) J Coord Chem 55:1161–1170

    CAS  Google Scholar 

  22. Chatterjee D, Mitra A, Roy BC (2000) J Mol Catal 161:17–21

    Google Scholar 

  23. Katsuki T (1995) Coord Chem Rev 140:189–214

    CAS  Google Scholar 

  24. Kleij AW (2009) Eur J Inorg Chem 2009:193–205

    Google Scholar 

  25. Kleij AW (2009) Dalton Trans 24:4635–4639

    Google Scholar 

  26. Cort AD, De Bernardin P, Forte G, Mihan FY (2010) Chem Soc Rev 39:3863–3874

    PubMed  Google Scholar 

  27. Whiteoak CJ, Salassa G, Kleij AW (2012) Chem Soc Rev 41:622–631

    CAS  PubMed  Google Scholar 

  28. Yin HY, Tang J, Zhang JL (2017) Eur J Inorg Chem 2017:5085–5093

    CAS  Google Scholar 

  29. Erxleben A (2018) Inorg Chim Acta 472:40–57

    CAS  Google Scholar 

  30. Ranga SP, Sharma S, Chowdhary V, Parihar M, Mehta RK (1988) J Curr Bio Sci 5:98–100

    CAS  Google Scholar 

  31. Chohan ZH (1999) Met Based Drug 6:187–192

    CAS  Google Scholar 

  32. Chohan ZH (1999) Met Based Drugs 6:75–80

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chohan ZH, Kausar S (2001) J Chem Soc Pak 23:163–167

    CAS  Google Scholar 

  34. Nair MS, Arish D, Joseyphus RS (2012) J Saudi Chem Soc 16:83–88

    CAS  Google Scholar 

  35. Gopalakrishnan S, Joseph J (2009) Mycobiology 37:141–146

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Shboul TMA, Ziemann S, Görls H, Jazzazi TMA, Krieck S, Westerhausen M (2018) Eur J Inorg Chem 2018:1563–1570

    CAS  Google Scholar 

  37. Al-Shboul TMA, Ziemann S, Görls H, Krieck S, Westerhausen M (2019) Z Anorg Allg Chem 645:292–300

    CAS  Google Scholar 

  38. Carlin RB, Foltz GE (1956) J Am Chem Soc 78:1997–2000

    CAS  Google Scholar 

  39. Hooft R, Nonius BV (1998) Collect data collection software. Nonius BV, Delft

    Google Scholar 

  40. Otwinowski Z, Minor W (1997) Methods in enzymology. Academic Press, New York

    Google Scholar 

  41. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) J Appl Cryst 48:3–10

    CAS  Google Scholar 

  42. Sheldrick GM (2015) Acta Cryst C 71:3–8

    Google Scholar 

  43. XP Siemens Analytical X-Ray Instruments Inc (1990) Karlsruhe, Germany (1994) Madison

  44. Spartan’18 Wavefunction. Inc. Irvine, CA

  45. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  46. Becke AD (1996) J Chem Phys 104:1040–1046

    CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  48. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris JA (1988) J Chem Phys 89:2193–2218

    CAS  Google Scholar 

  49. Petersson GA, Tensfeldt TG, Montgomery JA Jr (1991) J Chem Phys 94:6091–6101

    CAS  Google Scholar 

  50. Cheeseman TP, Hall D, Waters TN (1966) J Chem Soc A 1966:1396–1406

    Google Scholar 

  51. Wang Y, Stack TDP (1996) J Am Chem Soc 118:13097–13098

    CAS  Google Scholar 

  52. Ho CW, Cheng WC, Cheng MC, Peng SM, Cheng KF, Che CM (1996) J Chem Soc Dalton Trans 4:405–414

    Google Scholar 

  53. Che CM, Kwong HL, Cheung CW, Cheng KF, Lee WS, Yu HS, Yeung CT, Cheung KK (2002) Eur J Inorg Chem 2002:1456–1463

    Google Scholar 

  54. Heo J, Jeon Y, Mirkin CA (2007) J Am Chem Soc 129:7712–7713

    CAS  PubMed  Google Scholar 

  55. Mariko S, Hisako S, Yukie M, Yutaka F (2009) Bull Chem Soc Jpn 82:1266–1273

    Google Scholar 

  56. Chu Z, Ding LQ, Long Y, Chen LL, Lu XQ, Song JR, Fan DD, Bao F, Ma R (2010) J Inorg Organomet Polym Mater 20:235–241

    CAS  Google Scholar 

  57. Brychcy K, Drager K, Jens KJ, Tilset M, Behrens U (1994) Chem Ber 127:1817–1826

    CAS  Google Scholar 

  58. Panther T, Baumann U, Behrens U (2001) Z Anorg Allg Chem 627:238–243

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the valuable support of the NMR (www.nmr.uni-jena.de) and mass spectrometry service platforms (www.ms.uni-jena.de) of the Faculty of Chemistry and Earth Sciences of the Friedrich Schiller University Jena, Germany.

Funding

We highly appreciate the generous financial support of the Project We1561/21 by the German Research Foundation (DFG, Bonn, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher S. Ababneh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ababneh, T.S., Al-Shboul, T.M.A., Jazzazi, T.M.A. et al. Crystallographic and computational study of the structure of copper(II) 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl. Transit Met Chem 45, 435–442 (2020). https://doi.org/10.1007/s11243-020-00395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00395-8

Navigation