Skip to main content

Synthesis and crystal structure of two coordination polymers based on N,N′-bis(3-pyridylmethyl)pyromellitic diimide and fluorescence thiocyanate sensing

Abstract

Two N,N′-bis(3-pyridylmethyl)pyromellitic diimide (3-pmpmd) coordination polymers, namely{[Hg(3-pmpmd)I2]·H2O)}n (1), {[Ni2(3-pmpmd)3 (NO3)4]·2CH3OH}n (2), have been synthesized by reactions of 3-pmpmd with HgI2, Ni(NO3)2, respectively. Both complexes have been characterized by elemental analyses, powder X-ray diffraction, thermogravimetric analyses, IR spectroscopy, and single-crystal X-ray diffraction. In complex 1, the 3-pmpmd ligand adopts Zt-mode conformation, resulting in a typical 1D zigzag chain arranged in a parallel array; in complex 2, the 3-pmpmd ligand adopts Zt-mode and Uc-mode (two conformations), and complex 2 is a 2D (6, 3) network containing 1D quadrangle channels to accommodate the methanol molecules. The structural diversity in both complexes is attributed to the different conformations adopted by the 3-pmpmd ligand. Complex 2 showed remarkably enhanced fluorescence intensity at 340 nm upon the addition of 2 equiv of SCN anion (NaSCN) with respect to complex 2, which is highly promising for fluorescence sensing of the SCN anion. The methanol adsorption of complex 2 exhibited a dynamic adsorption property.

Graphic abstract

Two 1D and 2D N,N′-bis(3-pyridylmethyl)pyromellitic diimide (3-pmpmd) coordination polymers have been synthesized; the conformations of 3-pmpmd ligand affects their structural diversity. The enhanced fluorescence intensity sensor for SCN anion of complex 2 was investigated, which is highly promising for fluorescence sensing SCN anion.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Busschaert N, Caltagirone C, Rossom WV, Gale PA (2015) Chem Rev 115:8038

    CAS  Article  Google Scholar 

  2. Evans NH, Beer PD (2014) Angew Chem Int Ed 53:11716

    CAS  Article  Google Scholar 

  3. Kubik S (2010) Chem Soc Rev 39:3648

    CAS  Article  Google Scholar 

  4. Beekhuis HA (1975) Chemistry and biochemistry of thiocyanic acid and its derivatives. Academic Press, London, p 222

    Google Scholar 

  5. Wang J, Han PP, Xia Y (2019) Microporous Mesoporous Mater 287:107

    CAS  Article  Google Scholar 

  6. Yu X, Chang ZC, Sun XM, Lei XD, Evans DG, Xu SL, Zhang FZ (2011) Chem Eng J 169:151

    CAS  Article  Google Scholar 

  7. Kociolek-Balawejder E (1999) React Funct Polym 41:227

    CAS  Article  Google Scholar 

  8. Lin Q, Zhong KP, Zhu JH, Ding L, Su JX, Yao H, Wei TB, Zhang YM (2017) Macromolecules 50:7863

    CAS  Article  Google Scholar 

  9. Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ (2015) Chem Soc Rev 44:6143

    CAS  Article  Google Scholar 

  10. Jung HS, Chen X, Kim JS, Yoon J (2013) Chem Soc Rev 42:6019

    CAS  Article  Google Scholar 

  11. Yin C, Huo F, Zhang J, Martínez-Míñez R, Yang Y, Lv H, Li S (2013) Chem Soc Rev 42:6032

    CAS  Article  Google Scholar 

  12. Jun ME, Roy B, Ahn KH (2011) Chem Commun 47:7583

    CAS  Article  Google Scholar 

  13. Liu F, Tang C, Chen QQ, Shi FF, Wu HB, Xie LH, Peng B, Wei W, Cao Y, Huang W (2009) J Phys Chem C 113:4641

    CAS  Article  Google Scholar 

  14. Zhu H, Fan J, Du J, Peng X (2016) Acc Chem Res 49:2115

    CAS  Article  Google Scholar 

  15. Kumar S, Mukhopadhyay P (2018) Green Chem 20:4620

    CAS  Article  Google Scholar 

  16. Kumar Y, Kumar S, Mandal K, Mukhopadhyay P (2018) Angew Chem Int Ed 57:16318

    CAS  Article  Google Scholar 

  17. Kumar S, Shukla J, Kumar Y, Mukhopadhyay P (2018) Org Chem Front 5:2254

    CAS  Article  Google Scholar 

  18. Suraru SL, Würthner F (2014) Angew Chem Int Ed 53:7428

    CAS  Article  Google Scholar 

  19. Kobaisi MA, Bhosale SV, Latham K, Raynor AM, Bhosale SV (2016) Chem Rev 116:11685

    CAS  Article  Google Scholar 

  20. Bhosale SV, Jani CH, Langford SJ (2008) Chem Soc Rev 37:331

    CAS  Article  Google Scholar 

  21. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    CAS  Article  Google Scholar 

  22. Stock N, Biswas S (2011) Chem Rev 112:933

    Article  Google Scholar 

  23. Wei XJ, Liu D, Li YH, Cui GH (2019) Polyhedron 158:357

    CAS  Article  Google Scholar 

  24. Li JX, Liu D, Qin ZB, Dong GY (2019) Polyhedron 160:92

    CAS  Article  Google Scholar 

  25. Xiao QQ, Liu D, Wei YL, Cui GH (2019) Polyhedron 158:342

    CAS  Article  Google Scholar 

  26. Wei XJ, Li YH, Qin ZB, Cui GH (2019) J Mol Struct 1175:253

    CAS  Article  Google Scholar 

  27. Wei XJ, Liu D, Li YH, Cui GH (2019) J Solid State Chem 272:138

    CAS  Article  Google Scholar 

  28. Li GB, Yang QY, Pan RK, Liu SG (2018) CrystEngComm 20:3891

    CAS  Article  Google Scholar 

  29. Li GB, He JR, Pan M, Deng HY, Liu JM, Su CY (2012) Dalton Trans 41:4626

    CAS  Article  Google Scholar 

  30. Burrows AD, Frost CG, Mahon MF, Raithby PR, Richardson C, Stevenson AJ (2010) Chem Commun 46:5064

    CAS  Article  Google Scholar 

  31. Pan M, Lin XM, Li GB, Su CY (2011) Coord Chem Rev 255:1921

    CAS  Article  Google Scholar 

  32. Sheldrick GM (1997) SHELXS-97. University of Göttingen, Göttingen

    Google Scholar 

  33. heldrick GM (1996) University of Götingen, Götingen

  34. Sheldrick GM (1997) SHELXL-97. University of Götingen, Götingen

    Google Scholar 

  35. Motreff N, Gac SL, Luhmer M, Furet E, Halet JF, Roisnel T, Boitrel B (2011) Angew Chem Int Ed 50:1560

    CAS  Article  Google Scholar 

  36. Klein A, Rausch B, Kaiser A, Vogt N, Krest A (2014) J Organomet Chem 774:86

    CAS  Article  Google Scholar 

  37. Li GB, Pan RK, Liu SG (2017) Spectrochim Acta Part A Mol Biomol Spectrosc 187:168

    CAS  Article  Google Scholar 

  38. Li GB, Liu JM, Cai YP, Su CY (2011) Cryst Growth Des 11:2763

    CAS  Article  Google Scholar 

  39. Alkış M, Pekyılmaz D, Yalin E, Aydıner B, Dede Y (2017) Dyes Pigments 141:493

    Article  Google Scholar 

  40. Zhang SH, Wang JM, Zhang HY, Fan YP, Xiao Y (2017) Dalton Trans 46:410

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21403191), the Natural Science Foundation of Guangdong Province (No. 2017A030307036), Special funds for public welfare research and capacity building in Guangdong Province (No. 2016A010103042), and Research group of rare earth resource exploiting and luminescent materials (2017KCXTD022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Bi Li or Sheng-Gui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 434 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, XM., Li, GB., Pan, RK. et al. Synthesis and crystal structure of two coordination polymers based on N,N′-bis(3-pyridylmethyl)pyromellitic diimide and fluorescence thiocyanate sensing. Transit Met Chem 45, 187–193 (2020). https://doi.org/10.1007/s11243-019-00369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00369-5