Skip to main content
Log in

Synthesis, structures and magnetic properties of tetranuclear heterometallic complexes [Cu3M] (M = Mn(II) Co(II) and Ni(II)) based on an oxamido-bridged ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three tetranuclear heterometallic coordination compounds of the general formula [(CuL)2M(CuL·CH3OH)](ClO4)2 [(M = Mn(for 2), Co(for 3) and Ni(for 4)] were synthesized by the reaction of the precursor CuL·0.5H2O (1) (H2L = 2,3-dioxo-5,6:13,14-dibenzo-7,12-diphenyl-1,4,8,11-tetraazacyclotetradeca-7,12-diene) with M(ClO4)2·6H2O under solvothermal conditions. The compounds were fully characterized by elemental analysis, FTIR, UV–Vis spectroscopy, powder X-ray diffraction, single-crystal X-ray diffraction analysis. In addition, compound 2–4 were studied by magnetic susceptibility measurements. All three heterometallic compounds are isomorphous, and the central ions Mn(II), Co(II) and Ni(II) are connected to three CuL fragments via exo-cis oxamido bridges. Magnetic susceptibility studies of complexes 2–4 indicate the occurrence of antiferromagnetic coupling between the paramagnetic metals. The experimental data have been fitted according to the following Heisenberg Hamiltonian \(\hat{H} = - 2J\hat{S}_{{\text{M}}} (\hat{S}_{{{\text{Cu}}1}} + \hat{S}_{{{\text{Cu}}2}} + \hat{S}_{{{\text{Cu}}3}} )\), leading to J = − 15.24 cm−1, gCu = 2.06, gMn = 1.96 for complex 2, J = − 22.58 cm−1, gCu = 2.1, gCo = 2.55 for complex 3, and J = − 108.2 cm−1, gCu = 2.09, gNi = 2.27 for complex 4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larionova J, Mombelli B, Sanchiz J, Kahn O (1998) Inorg Chem 37:679–684

    Article  CAS  Google Scholar 

  2. Reis NV, Barros WP, Oliveira WXC, Pereira CLM, Rocha WR, Pinheiro CB, Lloret F, Julve M, Stumpf HO (2018) Eur J Inorg Chem 3–4:477–484

    Article  Google Scholar 

  3. Bikas R, Hosseini-Monfared H, Vasylyeva V, Sanchiz J, Alonso J, Barandiaran JM, Janiak C (2014) Dalton Trans 43:11925–11935

    Article  CAS  Google Scholar 

  4. McTiernan CD, Morin M, McCallum T, Scaiano JC, Barriault L (2016) Catal Sci Technol 6:201–207

    Article  Google Scholar 

  5. Rowsell JLC, Yaghi OM (2004) Microporous Mesoporous Mater 73:3–14

    Article  CAS  Google Scholar 

  6. Chaudhuri P (2003) Coord Chem Rev 243:143–190

    Article  CAS  Google Scholar 

  7. Costes JP, Lamère JF, Lepetit C, Lacroix PG, Dahan F (2005) Inorg Chem 44:1973–1982

    Article  CAS  Google Scholar 

  8. Andruh M, Ramade I, Codjovi E, Guillou O, Kahn O, Trombe JC (1993) J Am Chem Soc 115:1822–1829

    Article  CAS  Google Scholar 

  9. Marinescu G, Andruh M, Lloret F, Julve M (2011) Coord Chem Rev 255:161–185

    Article  CAS  Google Scholar 

  10. Pereira CLM, Pedroso EF, Stumpf HO, Novak MA, Ricard L, Ruiz-García R, Rivière E, Journaux Y (2004) Angew Chem Int Ed 43:956–958

    Article  CAS  Google Scholar 

  11. Ramade I, Kahn O, Jeannin Y, Robert F (1997) Inorg Chem 36:930–936

    Article  CAS  Google Scholar 

  12. Zhang L, Wang SB, Yang GM, Tang JK, Liao DZ, Jiang ZH, Yan SP, Cheng P (2003) Inorg Chem 42:1462–1466

    Article  CAS  Google Scholar 

  13. Ruiz R, Faus J, Lloret F, Julve M, Journaux Y (1999) Coord Chem Rev 193–195:1069–1117

    Article  Google Scholar 

  14. Lloret F, Julve M, Faus J, Ruiz R, Castro I, Mollar M, Philoche-Levisalles M (1992) Inorg Chem 31:784–791

    Article  CAS  Google Scholar 

  15. Marinho MV, Simões TRG, Ribeiro MA, Pereira CLM, Machado FC, Pinheiro CB, Stumpf HO, Cano J, Lloret F, Julve M (2013) Inorg Chem 52:8812–8819

    Article  CAS  Google Scholar 

  16. Oliveira WXC, Pinheiro CB, Costa MM, Fontes APS, Nunes WC, Lloret F, Julve M, Pereira CLM (2016) Cryst Growth Des 16:4094–4107

    Article  CAS  Google Scholar 

  17. Zhang YH, Yu M, Wang QL, Xu GF, Hu M, Yang GM, Liao DZ (2008) Polyhedron 27:3371–3376

    Article  CAS  Google Scholar 

  18. Rigaku MSC (2005) Crystal clear. Rigaku/MSC, The Woodlands

    Google Scholar 

  19. Sheldrick GM (1997) SHELXL–97. Program for crystal structures refinement. University of Göttingen, Göttingen

    Google Scholar 

  20. Sheldrick GM (2015) Acta Cryst C 71:3–8

    Article  Google Scholar 

  21. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  22. Spek AL (2002) PLATON. A multipurpose crystallographic tool. Ultrecht University, Utrecht

    Google Scholar 

  23. Wang SB, Li RF, Yang GM, Liao DZ, Jiang ZH, Yan SP (2005) Inorg Chim Acta 358:2595–2601

    Article  CAS  Google Scholar 

  24. Akhriff Y, Server-Carrió J, Sancho A, Garcίa-Lozano J, Escrivá E, Soto L (2001) Inorg Chem 40:6832–6840

    Article  CAS  Google Scholar 

  25. Addison AW, Rao TN, Reedijk J, Rinj JV, Verscholar CG (1984) J Chem Soc Dalton Trans 7:1349–1356

    Article  Google Scholar 

  26. Gao EQ, Tang JK, Liao DZ, Jiang ZH, Yan SP, Wang GL (2001) Helv Chim Acta 84:908–917

    Article  CAS  Google Scholar 

  27. Earnshaw A (1968) Introduction to magnetochemistry. Academic Press, London

    Google Scholar 

  28. Lloret F, Journaux Y, Julve M (1990) Inorg Chem 29:3967–3972

    Article  CAS  Google Scholar 

  29. Shi XM, Li CX, Li XZ, Ren S, Zhu LN (2013) Inorg Chim Acta 395:197–202

    Article  CAS  Google Scholar 

  30. Wang SB, Yang GM, Li RF, Wang YF, Liao DZ (2004) Eur J Inorg Chem 24:4907–4913

    Article  Google Scholar 

  31. Nayak M, Koner R, Lin HH, Flörke U, Wei HH, Mohanta S (2006) Inorg Chem 45:10764–10773

    Article  CAS  Google Scholar 

  32. Kahn O (1993) Molecular magnetism. VCH Publishers, New York

    Google Scholar 

  33. Wang HM, Liu ZL, Liu CM, Zhang DQ, Lü ZL, Geng H, Shuai ZG, Zhu DB (2004) Inorg Chem 43:4091–4098

    Article  CAS  Google Scholar 

  34. Wang J, Xu YL, Zhou HB, Wang HS, Song Y, You XZ (2010) Dalton Trans 39:3489–3494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (21761026); Natural Science Foundation of Inner Mongolia (2016BS0206); Inner Mongolia Autonomous Region Higher Scientific Research Project (NJZY18020); Collaborative Innovation Center for Water Environmental Security of Inner Mongolia Autonomous Region (XTCX003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hong Zhang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Deng, GR. & Gao, YY. Synthesis, structures and magnetic properties of tetranuclear heterometallic complexes [Cu3M] (M = Mn(II) Co(II) and Ni(II)) based on an oxamido-bridged ligand. Transit Met Chem 44, 737–745 (2019). https://doi.org/10.1007/s11243-019-00343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00343-1

Navigation