Skip to main content
Log in

DNA binding and antitumor activities of zinc(II) complexes with some S-alkenyl derivatives of thiosalicylic acid

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two zinc(II) complexes with S-alkenyl derivatives of thiosalicylic acid as ligands have been synthesized and characterized by microanalysis, IR, 1H and 13C NMR spectroscopy. The complexes were obtained by direct reaction of ZnCl2 with S-alkenyl derivatives of thiosalicylic acid in aqueous solution. On the basis of the physico-chemical and spectroscopic data, we conclude that the ligands are bidentately coordinated to the zinc(II) center. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by absorption (UV–Vis) and ethidium bromide displacement studies. The cytotoxic activities of the complexes were evaluated in comparison with oxaliplatin and cisplatin against two different cancer cell lines: murine colon carcinoma (CT26) and mouse melanoma (B16F1), while non-cancerous mouse mesenchymal stem cells (mMSCs) were used as a control. Both complexes showed moderate activities against mouse colon cancer and melanoma cells. The decrease in viability of melanoma cells is caused by induction of apoptosis and G2 phase arrest. The zinc(II) complex with S-propenyl thiosalicylic acid, although has a significantly weaker cytotoxic effect on tumor cells than oxaliplatin and cisplatin, acts more selectively on tumor cells than the known drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strohfeldt KA (2015) Essentials of inorganic chemistry: for students of pharmacy, pharmaceutical sciences and medicinal chemistry. Wiley, University of Reading

    Book  Google Scholar 

  2. Wegmüller R, Tay F, Zeder C, Brnić M, Hurrell RF (2013) Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J Nutr 144:132–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCall KA, Huang CC, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437–1446

    Article  Google Scholar 

  4. Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organisations. BMJ 326:409–410

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Ågren MS (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 15:2–16

    Article  PubMed  Google Scholar 

  6. Hoogenraad TU (2006) Paradigm shift in treatment of Wilson’s disease: zinc therapy now treatment of choice. Brain Dev 28:141–146

    Article  PubMed  Google Scholar 

  7. Dunn MF (2005) Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18:295–303

    Article  CAS  PubMed  Google Scholar 

  8. Tuerk MJ, Fazel N (2009) Zinc deficiency. Curr Opin Gastroenterol 25:136–143

    Article  CAS  PubMed  Google Scholar 

  9. Meunier N, Feillet-Coudray C, Rambeau M, Andriollo-Sanchez M, Brandolini-Bunlon M, Coulter SJ, Cashman KD, Mazur A, Coudray C (2005) Impact of micronutrient dietary intake and status on intestinal zinc absorption in late middle-aged men: the ZENITH study. Eur J Clin Nutr 59:S48

    Article  CAS  PubMed  Google Scholar 

  10. Federico A, Iodice P, Federico P, Del Rio A, Mellone MC, Catalano G, Federico P (2001) Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract. Eur J Clin Nutr 55:293–297

    Article  CAS  Google Scholar 

  11. Prasad AS, Beck FW, Doerr TD, Shamsa FH, Penny HS, Marks SC, Kaplan J, Kucuk O, Mathog RH (1998) Nutritional and zinc status of head and neck cancer patients: an interpretive review. J Am Coll Nutr 17:409–418

    Article  CAS  PubMed  Google Scholar 

  12. Gauna GA, Marino J, Vior MC, Roguin LP, Awruch J (2011) Synthesis and comparative photodynamic properties of two isosteric alkyl substituted zinc(II) phthalocyanines. Eur J Med Chem 46:5532–5539

    Article  CAS  PubMed  Google Scholar 

  13. Enyedy ÉA, Nagy NV, Zsigó É, Kowol CR, Arion VB, Keppler BK, Kiss T (2010) Comparative solution equilibrium study of the interactions of copper(II), iron(II) and zinc(II) with triapine(3-aminopyridine-2-carbaldehyde thiosemicarbazone) and related ligands. Eur J Inorg Chem 2010:1717–1728

    Article  CAS  Google Scholar 

  14. Li MX, Zhang LZ, Yang M, Niu JY, Zhou J (2012) Synthesis, crystal structures, in vitro biological evaluation of zinc(II) and bismuth(III) complexes of 2-acetylpyrazine N(4)-phenylthiosemicarbazone. Bioorg Med Chem Lett 22:2418–2423

    Article  CAS  PubMed  Google Scholar 

  15. Singh AK, Pandey OP, Sengupta SK (2012) Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1,2,4-triazole Schiff bases. Spectrochim Acta A Mol Biomol Spectrosc 85:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Abdel-Mawgoud AM, Abdel-Hamid R (1987) Cobalt(II), copper(II), zinc(II)-amino and thiosalicylic acids ternary complexes. Monatsh Chem 118:1219–1223

    Article  CAS  Google Scholar 

  17. Nikolić MV, Mijajlović MŽ, Tomović DLJ, Bukonjić AM, Jevtić VV, Ratković ZR, Trifunović SR, Radić GP (2018) Synthesis and characterization of zinc(II)-complexes with S-alkyl derivatives of thiosalicylic acid. Serb J Exp Clin Res 19:113–117

    Article  CAS  Google Scholar 

  18. Nikolić MV, Mijajlović MŽ, Jevtić VV, Ratković ZR, Novaković SB, Bogdanović GA, Milovanović J, Arsenijević A, Stojanović B, Trifunović SR, Radić GP (2016) Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid. J Mol Struct 1116:264–271

    Article  CAS  Google Scholar 

  19. Tomovic DLj, Bukonjic AM, Kocovic A, Nikolic MV, Mijajlovic MZ, Jevtic VV, Ratkovic ZR, Arsenijevic AN, Milovanovic JZ, Stojanovic B, Trifunovic SR (2017) Synthesis, characterization, and cytotoxicity of binuclear cooper (II)-complexes with some S-alkenyl derivatives of thiosalicyclic acid. Serb J Exp Clin Res 18:13–18

    Article  CAS  Google Scholar 

  20. Dimiza F, Fountoulaki S, Papadopoulos AN, Kontogiorgis CA, Tangoulis V, Raptopoulou CP, Psycharis V, Terzis A, Kessissoglou DP, Psomas G (2011) Non-steroidal antiinflammatory drug-copper(II) complexes: structure and biological perspectives. Dalton Trans 40:8555–8568

    Article  CAS  PubMed  Google Scholar 

  21. Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) Interaction of copper(II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: synthesis, structure, DNA-and albumin-binding. J Inorg Biochem 105:476–489

    Article  CAS  Google Scholar 

  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  23. Ojeda JJ, Romero-Gonzalez ME, Pouran HM, Banwart SA (2008) In situ monitoring of the biofilm formation of Pseudomonas putida on hematite using flow-cell ATR-FTIR spectroscopy to investigate the formation of inner-sphere bonds between the bacteria and the mineral. Min Mag 72:101–106

    Article  CAS  Google Scholar 

  24. Gao X, Metge DW, Ray C, Harvey RW, Chorover J (2009) Surface complexation of carboxylate adheres Cryptosporidium parvum oocysts to the hematite-water interface. Environ Sci Technol 43:7423–7429

    Article  CAS  PubMed  Google Scholar 

  25. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry 42:11544–11554

    Article  CAS  PubMed  Google Scholar 

  26. Recio Despaigne AA, Da Silva JG, da Costa PR, dos Santos RG, Beraldo H (2014) ROS-mediated cytotoxic effect of copper(II) hydrazone complexes against human glioma cells. Molecules 19:17202–17220

    Article  CAS  PubMed  Google Scholar 

  27. Silconi ZB, Benazic S, Milovanovic J, Jurisevic M, Djordjevic D, Nikolic M, Mijajlovic M, Ratkovic Z, Radić G, Radisavljevic S, Petrovic B, Radosavljevic G, Milovanovic M, Arsenijevic N (2018) DNA binding and antitumor activities of platinum(IV) and zinc(II) complexes with some S-alkyl derivatives of thiosalicylic acid. Transit Met Chem. https://doi.org/10.1007/s11243-018-0260-2

    Article  Google Scholar 

  28. Dhar S, Nethaji M, Chakravarty AR (2005) Effect of charge transfer bands on the photo-induced DNA cleavage activity of [1-(2-thiazolylazo)-2-naphtholato] copper(II) complexes. J Inorg Biochem 99:805–812

    Article  CAS  PubMed  Google Scholar 

  29. Čanović P, Simović AR, Radisavljević S, Bratsos I, Demitri N, Mitrović M, Zelen I, Bugarčić ŽD (2017) Impact of aromaticity on anticancer activity of polypyridyl ruthenium (II) complexes: synthesis, structure, DNA/protein binding, lipophilicity and anticancer activity. J Biol Inorg Chem 22:1007–1028

    Article  CAS  PubMed  Google Scholar 

  30. Velma V, Dasari SR, Tchounwou PB (2016) Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights 11:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sarin N, Engel F, Kalayda GV, Mannewitz M, Cinatl J Jr, Rothweiler F, Michaelis M, Saafan H, Ritter CA, Jaehde U, Frötschl R (2017) Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest. PLoS ONE 12:e0181081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lützkendorf J, Wieduwild E, Nerger K, Lambrecht N, Schmoll HJ, Müller-Tidow C, Müller LP (2017) Resistance for genotoxic damage in mesenchymal stromal cells is increased by hypoxia but not generally dependent on p53-regulated cell cycle arrest. PLoS ONE 12:e0169921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Serbian Ministry of Science and Technological Development (Grant Nos. ON175069, ON175071, ON172016, ON172034 and ON172011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Radić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popović, A., Nikolić, M., Mijajlović, M. et al. DNA binding and antitumor activities of zinc(II) complexes with some S-alkenyl derivatives of thiosalicylic acid. Transit Met Chem 44, 219–228 (2019). https://doi.org/10.1007/s11243-018-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0285-6

Navigation