Skip to main content
Log in

Efficient aerobic photooxygenation of aldehydes to carboxylic acids using cobalt(II) phthalocyanine sulfonate as a photosensitizer in organic-water biphasic media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The aerobic oxidation of a variety of aromatic aldehydes to the corresponding carboxylic acids by molecular oxygen in the presence of 4-carboxyl tetraphenylporphyrin (H2TCPP), methylene blue (MB), cobalt(II) phthalocyanine sulfonate (CoPcS) and FeTCPPCl as water-soluble photosensitizers in organic-water biphasic media at room temperature under either visible light or sunlight is described. The products were obtained with 25–100% conversion and 100% selectivity. This method has a wide range of applicabilities, has a straightforward workup procedure, is chemoselective and proceeds under mild reaction conditions. The resulting products were obtained in good yields in reasonable times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3

Similar content being viewed by others

References

  1. Hollingworth GJ, Katritzky AR, Meth-Cohn O, Rees CW, Pattenden G (1995) In comprehensive organic functional group transformations. Elsevier Sci, Oxford

    Google Scholar 

  2. Hudlicky M (1990) Oxidations in organic chemistry. American Chemical Society, Washington DC

    Google Scholar 

  3. Larock RC (1999) Comprehensive organic transformations: a guide to functional group preparations, 2nd edn. Wiley, New York

    Google Scholar 

  4. Smith MB, March J (2001) March’s advanced organic chemistry: reactions mechanisms and structure, 5th edn. Wiley, New York

    Google Scholar 

  5. Bowden K, Heilbron IM, Jones ERH, Weedon BCL (1946) J Chem Soc. https://doi.org/10.1039/JR9460000039

    Article  PubMed  Google Scholar 

  6. Heilbron I, Jones E, Sondheimer F (1949) J Chem Soc. https://doi.org/10.1039/JR9490000604

    Article  PubMed  Google Scholar 

  7. Bladon P, Fabian JM, Henbest H, Koch H, Wood GW (1951) J Chem Soc. pp 2402–2411

  8. Curtis R, Heilbron I, Jones E, Woods GF (1953) J Chem Soc. https://doi.org/10.1039/JR9530000457

    Article  Google Scholar 

  9. Bowers A, Halsall T, Jones E, Lemin A (1953) J Chem Soc. https://doi.org/10.1039/JR9530002548

    Article  Google Scholar 

  10. Djerassi C, Engle R, Bowers A (1956) J Org Chem 21:1547–1549

    Article  CAS  Google Scholar 

  11. Benjamin RT, Sivakumar M, Hollist GO, Borhan B (2003) Org Lett 5:1031–1034

    Article  CAS  Google Scholar 

  12. Nwaukwa SO, Keehn PM (1982) Tetrahedron Lett 23:3131–3134

    Article  CAS  Google Scholar 

  13. Ganem B, Heggs RP, Biloski AJ, Schwartz DR (1980) Tetrahedron Lett 21:685–688

    Article  CAS  Google Scholar 

  14. Joseph JK, Jain SL, Sain B (2007) Catal Commun 8:83–87

    Article  CAS  Google Scholar 

  15. Lim M, Yoon CM, An G, Rhee H (2007) Tetrahedron Lett 48:3835–3839

    Article  CAS  Google Scholar 

  16. Sloboda-Rozner D, Neimann K, Neumann R (2007) J Mol Catal A Chem 262:109–113

    Article  CAS  Google Scholar 

  17. Mukhopadhyay C, Datta A (2008) Catal Commun 9:2588–2592

    Article  CAS  Google Scholar 

  18. Uyanik M, Ishihara K (2009) Chem Commun. https://doi.org/10.1039/B823399C

    Article  Google Scholar 

  19. Han A-R, Jeong YJ, Kang Y, Lee JY, Seo MS, Nam W (2008) Chem Commun. https://doi.org/10.1039/B716558G

    Article  Google Scholar 

  20. Ellis PE Jr, Lyons JE (1990) Coord Chem Rev 105:181–193

    Article  CAS  Google Scholar 

  21. Haranaka M, Hara A, Ando W, Akasaka T (2009) Tetrahedron Lett 50:3585–3587

    Article  CAS  Google Scholar 

  22. Khavasi HR, Safari N (2004) J Mol Catal A 220:127–132

    Article  CAS  Google Scholar 

  23. DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233:351–371

    Article  Google Scholar 

  24. Greer A (2006) Acc Chem Res 39:797–804

    Article  CAS  PubMed  Google Scholar 

  25. Redmond RW, Gamlin JN (1999) Photochem Photobiol 70:391–475

    Article  CAS  PubMed  Google Scholar 

  26. Bonnett R (1995) Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  27. Weber L, Hommel R, Behling J, Haufe G, Hennig H (1994) J Am Chem Soc 116:2400–2408

    Article  CAS  Google Scholar 

  28. Pandey R, Zheng G (2000) The porphyrin handbook. In: Kadish KM, Smith KM, Guilard R (eds), vol 6. Academic Press, Boston, pp 157–230

  29. Pushpan S, Venkatraman S, Anand V, Sankar J, Parmeswaran D, Ganesan S, Chandrashekar T (2002) Curr Med Chem Anti-Cancer Agents 2:187–207

    Article  CAS  PubMed  Google Scholar 

  30. Nyman ES, Hynninen PH (2004) J Photochem Photobiol B 73(1–2):1–28

    Article  CAS  PubMed  Google Scholar 

  31. Sorokin AB (2013) Chem Rev 113:8152–8191

    Article  CAS  PubMed  Google Scholar 

  32. Vashurin A, Maizlish V, Kuzmina I, Znoyko S, Morozova A, Razumov M, Koifman O (2017) J Porphyr Phthalocyanines 21:37–47

    Article  CAS  Google Scholar 

  33. Ebrahimian Pirbazari A (2015) Procedia Mater Sci 11:622–627

    Article  CAS  Google Scholar 

  34. Wang D, Guo R, Wang S, Liu F, Wang Y, Zhao C (2016) Desalin Water Treat 57:25226–25234

    Article  CAS  Google Scholar 

  35. Hajimohammadi M, Bahadoran F, Davarani SSH, Safari N (2010) React Kinet Mech Cat 99:243–250

    CAS  Google Scholar 

  36. Hajimohammadi M, Safari N, Mofakham H, Deyhimi F (2011) Green Chem 13:991–997

    Article  CAS  Google Scholar 

  37. Kalajahi SSM, Hajimohammadi M, Safari N (2014) React Kinet Mech Cat 113:629–640

    Article  CAS  Google Scholar 

  38. Hajimohammadi M, Ghasemi H (2016) J Porphyr Phthalocyanines 20:670–676

    Article  CAS  Google Scholar 

  39. Adler AD, Longo FR, Shergalis W (1964) J Am Chem Soc 86:3145–3149

    Article  CAS  Google Scholar 

  40. Yan GP, Bischa D, Bottle SE (2007) Free Rad Biol Med 43:111–116

    Article  CAS  PubMed  Google Scholar 

  41. Kulinich VP, Shaposhnikov GP, Badaukaite RA (2010) Macroheterocycles 3:23–29

    Article  CAS  Google Scholar 

  42. Knör G (2001) Chem Bio Chem 2:593–596

    Article  PubMed  Google Scholar 

  43. Staicu A, Pascu A, Nuta A, Sorescu A, Raditoiu V, Pascu ML (2013) Rom Rep Phys 65:1032–1051

    CAS  Google Scholar 

  44. Sawyer DT (1991) Oxygen chemistry. Oxford University Press, Oxford

    Google Scholar 

  45. Min DB, Boff JM (2002) Compr Rev Food Sci Food Saf 1:58–72

    Article  CAS  Google Scholar 

  46. Aubry JM, Pierlot C, Rigaudy J, Schmidt R (2003) Acc Chem Res 36:668–675

    Article  CAS  PubMed  Google Scholar 

  47. Nowakowska M (1978) Macromol Chem Phys 179:2959–2967

    Article  CAS  Google Scholar 

  48. Nowakowska M (1980) Macromol Chem Phys 181:1021–1027

    Article  CAS  Google Scholar 

  49. Olea AF, Wilkinson F (1995) J Phys Chem 99:4518–4524

    Article  CAS  Google Scholar 

  50. Harbour JR, Issler SL (1982) J Am Chem Soc 104:903–905

    Article  CAS  Google Scholar 

  51. Chen Y, Xu S, Li L, Zhang M, Shen J, Shen T (2001) Dyes Pigments 51:63–69

    Article  CAS  Google Scholar 

  52. Bressan M, Morvillo A (1989) Inorg Chem 28:950

    Article  CAS  Google Scholar 

  53. Toffoli DJ, Gomes L, Junior NDV, Courrol LC (2008) In: AIP conference proceedings, AIP, vol 992. p 1207

  54. Bernini R, Coratti A, Provenzano G, Fabrizi G, Tofani D (2005) Tetrahedron Lett 61:1821–1825

    Article  CAS  Google Scholar 

  55. Wu XA, Ying P, Liu JY, Shen HS, Chen Y, He L (2009) Synth Commun 39:3459–3470

    Article  CAS  Google Scholar 

  56. Nield E, Stephens R, Tatlow JC (1959) J Chem Soc. https://doi.org/10.1039/JR9590000166

    Article  Google Scholar 

  57. Donleavy JJ (1936) J Am Chem Soc 58:1004–1005

    Article  CAS  Google Scholar 

  58. Ueda I (1975) Bull Chem Soc Jpn 48:2306–2309

    Article  CAS  Google Scholar 

  59. Taha N, Chidambaram M, Dakka J, Sasson Y (2009) Catal Lett 129:358–362

    Article  CAS  Google Scholar 

  60. Ferenc WI, Walkow-Dziewulska AG (2001) J Serb Chem Soc 66:543–554

    Article  CAS  Google Scholar 

  61. Iqbal N, Choi S, You Y, Cho EJ (2013) Tetrahedron Lett 54:6222–6225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by Iran National Science Foundation (INSF) no. 96005616, and Research Council of Kharazmi University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hajimohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajimohammadi, M., Ahmadi Khamesi, Z. & Nosrati, P. Efficient aerobic photooxygenation of aldehydes to carboxylic acids using cobalt(II) phthalocyanine sulfonate as a photosensitizer in organic-water biphasic media. Transit Met Chem 44, 167–173 (2019). https://doi.org/10.1007/s11243-018-0281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0281-x

Navigation