Skip to main content
Log in

Metal complex derivatives of bis(pyrazol-1-yl)methane ligands: synthesis, characterization and anti-Trypanosoma cruzi activity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this work, the synthesis and characterization of seven complexes (1–7) was performed with Zn(II), Cu(II), Co(II) and Ni(II) transition metals and ligands derived from bis(3,5-dimethylpyrazol-1-yl)methane (bdmpzm) and bis(3,5-dimethyl-4-nitro-1H-pyrazolyl)methane (L). The complexes were obtained in high yields, isolated as air-stable solids and characterized by physicochemical and spectroscopic methods. The structures of L and complex 1 were determined by single-crystal X-ray diffraction analysis. The complexes and their respective ligands were evaluated against epimastigotes of Trypanosoma cruzi strains. An increase in the activity of the complexes was observed compared to the free ligands. Greater activities were found for Co(II) complexes than for Cu(II), Ni(II) and Zn(II) complexes. Additionally, complexes 3 and 9 had little effect on erythrocytes, indicating that they are non-toxic. The results obtained in mitochondrial membrane potential analyses suggest a possible mechanism by which complex 3 has a trypanocidal effect through the induction of oxidative stress. The results could provide an interesting contribution to the further design of active complexes against T. cruzi.

Graphical abstract

Synthesis and structural characterization of new complexes with zinc(II), copper(II), cobalt(II) and nickel(II) transition metals derived from bis(pyrazol-1-yl)methane ligands. The cobalt(II) complexes have high activity against epimastigotes from Trypanosoma cruzi strains and are not toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steverding D (2014) The history of Chagas disease. Parasites Vectors 7:1–8. https://doi.org/10.1186/1756-3305-7-317

    Article  Google Scholar 

  2. Silva JJN, Osakabe AL, Pavanelli WR et al (2007) In vitro and in vivo antiproliferative and trypanocidal activities of ruthenium NO donors. Br J Pharmacol 152:112–121. https://doi.org/10.1038/sj.bjp.0707363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maya JD, Cassels BK, Iturriaga-Vásquez P et al (2007) Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comput Biochem Physiol A Mol Integr Physiol 146:601–620. https://doi.org/10.1016/j.cbpa.2006.03.004

    Article  CAS  Google Scholar 

  4. Gutteridge WE (1976) Chemotherapy of Chagas’ disease. Trans R Soc Trop Med Hyg 70:123–124. https://doi.org/10.1016/0035-9203(76)90169-3

    Article  CAS  PubMed  Google Scholar 

  5. Castillo KF, Bello-Vieda NJ, Nuñez-Dallos NG et al (2016) Metal complex derivatives of azole: a study on their synthesis, characterization, and antibacterial and antifungal activities. J Braz Chem Soc 27:2334–2347. https://doi.org/10.5935/0103-5053.20160130

    Article  CAS  Google Scholar 

  6. Biot C, Castro W, Botté CY, Navarro M (2012) The therapeutic potential of metal-based antimalarial agents: implications for the mechanism of action. Dalt Trans 41:6335. https://doi.org/10.1039/c2dt12247b

    Article  CAS  Google Scholar 

  7. Murcia R, Leal S, Roa M et al (2018) Development of antibacterial and antifungal triazole chromium(III) and cobalt(II) complexes: synthesis and biological activity evaluations. Molecules 23:2013. https://doi.org/10.3390/molecules23082013

    Article  CAS  PubMed Central  Google Scholar 

  8. Bello-Vieda NJ, Pastrana HF, Garavito MF et al (2018) Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules 23:1–17. https://doi.org/10.3390/molecules23020361

    Article  CAS  Google Scholar 

  9. Hurtado J, Ibarra L, Yepes D et al (2017) Synthesis, crystal structure, catalytic and anti-Trypanosoma cruzi activity of a new chromium(III) complex containing bis(3,5-dimethylpyrazol-1-yl)methane. J Mol Struct 1146:365–372. https://doi.org/10.1016/j.molstruc.2017.06.014

    Article  CAS  Google Scholar 

  10. Boni A, Pampaloni G, Peloso R et al (2006) Synthesis of copper(I) bis(3,5-dimethylpyrazolyl)methane olefin complexes and their reactivity towards carbon monoxide. J Organomet Chem 691:5614–5621. https://doi.org/10.1016/j.jorganchem.2006.09.006

    Article  CAS  Google Scholar 

  11. Wang JX, Zhu ZR, Bai FY et al (2015) Molecular design and the optimum synthetic route of the compounds with multi-pyrazole and its derivatives and the potential application in antibacterial agents. Polyhedron 99:59–70. https://doi.org/10.1016/j.poly.2015.06.020

    Article  CAS  Google Scholar 

  12. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  13. Spek AL (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr Sect C Struct Chem 71:9–18. https://doi.org/10.1107/S2053229614024929

    Article  CAS  Google Scholar 

  14. Park NG, Silphaduang U, Moon HS et al (2011) Structure–activity relationships of piscidin 4, a piscine antimicrobial peptide. Biochemistry 50:3288–3299. https://doi.org/10.1021/bi101395j

    Article  CAS  PubMed  Google Scholar 

  15. Navarro-Ranninger MC, Alvarez-Valdés A, Camazón MJ, Masaguer JR (1987) Complexes of copper(II) with substituted benzylideneamines. Inorg Chim Acta 132:7–10. https://doi.org/10.1016/S0020-1693(00)83982-1

    Article  CAS  Google Scholar 

  16. Parashar RK, Sharma RC, Kumar A, Mohan G (1988) Stability studies in relation to IR data of some schiff base complexes of transition metals and their biological and pharmacological studies. Inorg Chim Acta 151:201–208. https://doi.org/10.1016/S0020-1693(00)83468-4

    Article  CAS  Google Scholar 

  17. Tarafder MT, Jin KT, Crouse KA et al (2002) Coordination chemistry and bioactivity of Ni2+, Cu2+, Cd2+ and Zn2+ complexes containing bidentate Schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structure of bis[S-benzyl-β-N-(5-methyl-2-furylmethylene)dithiocarbazato]cadmium(II). Polyhedron 21:2547–2554. https://doi.org/10.1016/S0277-5387(02)01188-9

    Article  CAS  Google Scholar 

  18. Long DA (2004) Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. J Raman Spectrosc 35:905–905. https://doi.org/10.1002/jrs.1238

  19. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570. https://doi.org/10.1126/science.172.3983.567

    Article  CAS  PubMed  Google Scholar 

  20. Cremer D, Pople JA (1975) A General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358. https://doi.org/10.1021/ja00839a011

    Article  CAS  Google Scholar 

  21. Sandoval-Rojas AP, Ibarra L, Cortés MT et al (2017) Synthesis and characterization of copper(II) complexes containing acetate and N, N-donor ligands, and their electrochemical behavior in dopamine detection. J Electroanal Chem 805:60–67. https://doi.org/10.1016/j.jelechem.2017.10.018

    Article  CAS  Google Scholar 

  22. Rueda-Espinosa J, Torres JF, Gauthier CV et al (2017) Copper(II) complexes with tridentate bis(pyrazolylmethyl)pyridine ligands: synthesis, X-ray crystal structures and ϵ-caprolactone polymerization. ChemistrySelect 2:9815–9821. https://doi.org/10.1002/slct.201701820

    Article  CAS  Google Scholar 

  23. Brewster L, Barbour P, Grundhausex FJ (2000) Possible roles for zinc in destruction of Trypanosoma cruzi by toxic oxygen metabolites produced by mononuclear phagocytes. 61:111–112. https://doi.org/10.1007/978-1-4613-0553-8_10

  24. de Carvalho LP, de Melo EJT (2017) Life and death of Trypanosoma cruzi in presence of metals. Biometals 30:955–974. https://doi.org/10.1007/s10534-017-0064-4

    Article  CAS  PubMed  Google Scholar 

  25. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta Mol Cell Res 1763:711–722. https://doi.org/10.1016/j.bbamcr.2006.03.005

    Article  CAS  Google Scholar 

  26. Heerding DA, Chan G, DeWolf WE et al (2001) 1, 4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg Med Chem Lett 11:2061–2065. https://doi.org/10.1016/S0960-894X(01)00404-8

    Article  CAS  PubMed  Google Scholar 

  27. Kljun J, Scott AJ, Lanišnik Rižner T et al (2014) Synthesis and biological evaluation of organoruthenium complexes with azole antifungal agents. First crystal structure of a tioconazole metal complex. Organometallics 33:1594–1601. https://doi.org/10.1021/om401096y

    Article  CAS  Google Scholar 

  28. Kabbani AT, Hammud HH, Ghannoum AM (2007) Preparation and antibacterial activity of copper and cobalt complexes of 4-chloro-3-nitrobenzoate with a nitrogen donor ligand. Chem Pharm Bull (Tokyo) 55:446–450. https://doi.org/10.1248/cpb.55.446

    Article  CAS  Google Scholar 

  29. Thimmaiah KN, Chandrappa GT, Sekhar VC (1986) Extraction spectrophotometric investigation of mixed ligand complex of molybdenum(V) with thiocyanate and 4-acetyl-2-(acetylamino)-5-dimethyl-δ2-1,3,4-thiadiazole. Mikrochim Acta 90:277–285. https://doi.org/10.1007/BF01199270

    Article  Google Scholar 

  30. Viswanathamurthi P, Karvembu R, Tharaneeswaran V, Natarajan K (2005) Ruthenium(II) complexes containing bidentate Schiff bases and triphenylphosphine or triphenylarsine. J Chem Sci 117:235–238. https://doi.org/10.1007/BF02709292

    Article  CAS  Google Scholar 

  31. Nfor EN, Asobo PF, Nenwa J et al (2013) Nickel (II) and iron (II) complexes with azole derivatives: synthesis, crystal structures and antifungal activities. Int J Inorg Chem 2013:1–7. https://doi.org/10.1155/2013/987574

    Article  CAS  Google Scholar 

  32. Urbina JA, Concepcion JL, Montalvetti A et al (2003) Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas’ disease. Antimicrob Agents Chemother 47:2047–2050. https://doi.org/10.1128/aac.47.6.2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. García-Huertas P, Mejía-Jaramillo AM, Machado CR et al (2017) Prostaglandin F2α synthase in Trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. R Soc Open Sci 4:170773. https://doi.org/10.1098/rsos.170773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aguiar PHN, Furtado C, Repolês BM et al (2013) Oxidative stress and DNA Lesions: the Role of 8-oxoguanine lesions in Trypanosoma cruzi cell viability. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0002279

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the Department of Chemistry and the School of Science of the Universidad de los Andes for financial support. O. Triana acknowledges the Universidad de Antioquia, Estrategia de sostenibilidad UdeA. We thank the reviewers and editor for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Hurtado.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary data

CCDC 1586067 and 1586068 contain supplementary crystallographic data for L and 1, respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, D., Páez, C., Ibarra, L. et al. Metal complex derivatives of bis(pyrazol-1-yl)methane ligands: synthesis, characterization and anti-Trypanosoma cruzi activity. Transit Met Chem 44, 135–144 (2019). https://doi.org/10.1007/s11243-018-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0277-6

Navigation