Skip to main content
Log in

Synthesis, DNA-binding, molecular docking and cytotoxic activity in vitro evaluation of ruthenium(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Five new ruthenium(II) polypyridyl complexes [Ru(N–N)2(BTCP)](ClO4)2 (BTCP = 2-(bicyclo[2.2.1]hept-5-en-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline; N–N = dmb: 4,4′-dimethyl-2,2′-bipyridine, 1; bpy: 2,2′-bipyridine 2; ttbpy: ditertairy-butyl-2,2′-bipyridine 3; phen: 1,10-phenanthroline 4; dmp: 2,9-dimethyl-1,10-phenanthroline 5) were synthesized and characterized by elemental analysis, IR, ESI-MS, 1H NMR and 13C NMR. The DNA-binding behaviors were studied by electronic absorption titration, viscosity measurements and molecular docking. The results show that complexes 14 interact with CT-DNA through intercalative modes, whereas complex 5 interacts through a partial intercalative mode. The DNA-binding constants follow the order of 3 > 4 > 1 > 2 > 5. The cytotoxic activity of the complexes against SGC-7901, PC-12, SiHa, HepG2, BEL-7402, A549 and HeLa cancer cell lines was evaluated by MTT method. The complexes display moderate cytotoxic activity toward BEL-7402 cells with an IC50 value of 25.5 ± 1.3 µM for 1, 45.7 ± 4.2 µM for 2, 6.5 ± 0.4 µM for 3, 13.2 ± 1.2 µM for 4 and 9.1 ± 1.1 µM for 5, respectively. Complex 5 exhibits the highest cytotoxic effect on the cell growth in SGC-7901, HepG2 and A549 cells among the complexes. The cytotoxic activity of the complexes is not consistent with the order of their DNA-binding constants. The apoptosis of BEL-7402 cells was studied under a fluorescent microscope and by flow cytometry. Measurements of reactive oxygen species, mitochondrial membrane potential and comet assays were carried out. The cell cycle arrest was investigated by flow cytometry, and the results demonstrate that complexes 1, 2, 4 and 5 inhibit the cell growth at G0/G1 phase and complex 3 induces cell cycle arrest at G2/M phase in BEL-7402 cells. The expression of Bcl-2 family induced by the complexes was studied by western blot. The results obtained show that complexes induce apoptosis in BEL-7402 cells through action of DNA and ROS-mediated mitochondrial dysfunction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dabrowiak JC (2009) Metals in medicine. Wiley, West Sussex

    Book  Google Scholar 

  2. Erkkila KE, Odem DT, Barton JK (1999) Chem Rev 99:2777–2796

    Article  CAS  PubMed  Google Scholar 

  3. Xiong Y, Ji LN (1999) Coord Chem Rev 185–186:711–733

    Article  Google Scholar 

  4. Blasius R, Moucheron C, Kirsch-De Mesmaeker A (2004) Eur J Inorg Chem 20:3971–3979

    Article  CAS  Google Scholar 

  5. Tang B, Shen F, Wan D, Guo BH, Wang YJ, Liu YJ (2017) RSC Adv 7:34945–34958

    Article  CAS  Google Scholar 

  6. Tang B, Han BJ, Wan D, Lai SH, Wang XZ, Zhang C, Zeng CC, Liu YJ (2017) Transit Met Chem 42:373–386

    Article  CAS  Google Scholar 

  7. Hu PC, Wang Y, Zhang Y, Song H, Gao FF, Lin HY, Wang ZH, Wei L, Yang F (2016) RSC Adv 6:29963–29976

    Article  CAS  Google Scholar 

  8. Deepika N, Devi CS, Kumar YP, Reddy KL, Reddy PV, Kumar DA, Singh SS, Satyanarayana S (2016) J Photochem Photobiol B Biol 160:142–153

    Article  CAS  Google Scholar 

  9. Li W, Han BJ, Yao JH, Jiang GB, Liu YJ (2015) RSC Adv 5:24534–24543

    Article  CAS  Google Scholar 

  10. Mohanraj M, Ayyannan G, Raja G, Jayabalakrishnan C (2016) J Photochem Photobiol B Biol 158:164–173

    Article  CAS  Google Scholar 

  11. Lai SH, Li W, Yao JH, Han BJ, Jiang GB, Zhang C, Zeng CC, Liu YJ (2016) J Photochem Photobiol B Biol 158:39–48

    Article  CAS  Google Scholar 

  12. Lai SH, Li W, Wang XZ, Zhang C, Zeng CC, Tang B, Wan D, Liu YJ (2016) RSC Adv 6:63143–63156

    Article  CAS  Google Scholar 

  13. Zeng CC, Lai SH, Yao JH, Zhang C, Yin H, Li W, Han BJ, Liu YJ (2016) Eur J Med Chem 122:118–126

    Article  CAS  PubMed  Google Scholar 

  14. Chen LM, Peng F, Li GD, Jie XM, Cai KR, Cai C, Zhong Y, Zheng H, Li W, Zhang Z, Chen JC (2016) J Inorg Biochem 156:64–74

    Article  CAS  Google Scholar 

  15. Corrêa RS, da Silva MM, Graminha AE, Meira CS, dos Santos JAF, Moreira DRM, Soares MBP, Poelhsitz GV, Castellano EE, Bloch C Jr, Cominetti MR, Batista AA (2016) J Inorg Biochem 156:153–163

    Article  CAS  PubMed  Google Scholar 

  16. Martin A, Byrne A, Burke CS, Forster RJ, Keyes TE (2014) J Am Soc Chem 136:15300–15309

    Article  CAS  Google Scholar 

  17. Chakrabortty S, Agrawalla BK, Stumper A, Vegi NM, Fischer S, Reichardt C, Kögler M, Dietzek B, Feuring-Buske M, Buske C, Rau S, Weil T (2017) J Am Soc Chem 139:2512–2519

    Article  CAS  Google Scholar 

  18. Liu P, Wu BY, Liu J, Dai YC, Wang YJ, Wang KZ (2016) Inorg Chem 55:1412–1422

    Article  CAS  PubMed  Google Scholar 

  19. Kamatchi TS, Kalaivani P, Fronczek FR, Natarajan K, Prabhakaran R (2017) RSC Adv 7:46531–46547

    Article  Google Scholar 

  20. Peña B, David A, Pavani C, Baptista MS, Pellois JP, Turro C, Dunbar KR (2014) Organometallics 33:1100–1103

    Article  CAS  Google Scholar 

  21. Wongrakpanich A, Geary SM, Joiner ML, Anderson ME, Salem AK (2014) Nanomedicine 9:2531–2543

    Article  CAS  PubMed  Google Scholar 

  22. Decaudin D, Marzo I, Brenner C, Kroemer G (1998) Int J Oncol 12:141–152

    CAS  PubMed  Google Scholar 

  23. Zhang C, Lai SH, Yang HH, Xing DG, Zeng CC, Tang B, Wan D, Liu YJ (2017) RSC Adv 7:17752–17762

    Article  CAS  Google Scholar 

  24. Zhang C, Lai SH, Zeng CC, Tang B, Wan D, Xing DG, Liu YJ (2016) J Biol Inorg Chem 21:1047–1060

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  26. Collin JP, Sauvage JP (1986) Inorg Chem 25:135–141

    Article  CAS  Google Scholar 

  27. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392–6396

    Article  CAS  Google Scholar 

  28. Chaires JB, Dattagupta N, Crothers DM (1982) Biochemistry 21:3933–3940

    Article  CAS  PubMed  Google Scholar 

  29. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Biochemistry 32:2573–2584

    Article  CAS  PubMed  Google Scholar 

  30. Satyanaryana S, Dabrowial JC, Chaires JB (1982) Biochemistry 31:9319–9324

    Article  Google Scholar 

  31. Cohen G, Eisenberg H (1969) Biopolymers 8:45–55

    Article  CAS  Google Scholar 

  32. Tabassum S, Al-Asbahy WM, Afzal M, Arjmanda F, Bagchib V (2012) Dalton Trans 41:4955–4964

    Article  CAS  PubMed  Google Scholar 

  33. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  34. Xie YY, Huang HL, Yao JH, Lin GJ, Jiang GB, Liu YJ (2013) Eur J Med Chem 63:603–610

    Article  CAS  PubMed  Google Scholar 

  35. Coury JE, Anderson JR, McFail-Isom L, Williams LD, Bottmley LA (1997) J Am Chem Soc 119:3792–3796

    Article  CAS  Google Scholar 

  36. Arockiasamy DL, Radhika S, Parthasarathi R, Nair BU (2009) Eur J Med Chem 44:2044–2051

    Article  CAS  Google Scholar 

  37. Rohs R, Bloch I, Sklenar H, Shakked Z (2005) Nucleic Acids Res 33:7048–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gan Q, Zhang CL, Wang BF, Xiong YH, Fu YL, Mao ZW, Le XY (2016) RSC Adv 6:35952–35965

    Article  CAS  Google Scholar 

  39. Wan D, Lai SH, Yang HH, Tang B, Zhang C, Yin H, Zeng CC, Liu YJ (2016) J Photochem Photobiol B Biol 165:246–255

    Article  CAS  Google Scholar 

  40. Venkat RP, Rajender RM, Srishailam A, Praveen KY, Nagamani C, Deepika N, Nagasuryaprasad K, Satyanarayana SS, Satyanarayana S (2015) Anal Biochem 485:49–58

    Article  CAS  Google Scholar 

  41. de Bruin EC, Medema JP (2008) Cancer Treat Rev 34:737–749

    Article  PubMed  Google Scholar 

  42. Romero-Canelón I, Salassa L, Sadler PJ (2013) J Med Chem 56:1291–1300

    Article  CAS  PubMed  Google Scholar 

  43. Alapetite C, Wachter T, Sage E, Moustacchi E (1996) Int J Radiat Biol 69:359–369

    Article  CAS  PubMed  Google Scholar 

  44. Pelicano H, Carney D, Huang P (2004) Drug Resist Update 7:97–110

    Article  CAS  Google Scholar 

  45. Chen T, Wong Y (2008) Cell Mol Life Sci 65:2763–2775

    Article  CAS  PubMed  Google Scholar 

  46. Lai SH, Li W, Yao JH, Han BJ, Jiang GB, Zhang C, Zeng CC, Liu YJ (2016) J Photochem Photobiol B Biol 158:39–48

    Article  CAS  Google Scholar 

  47. Chen TF, Wong YS (2009) Int J Biochem Cell Biol 41:666–676

    Article  CAS  PubMed  Google Scholar 

  48. Bartels RH, Van der Linden YM, Van der Graaf WT (2008) CA Cancer J Clin 58:245–259

    Article  PubMed  Google Scholar 

  49. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJD, Cheng EHY (2009) Mol Cell 36:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2016A030313728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Lin Yang or Yun-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Tang, B., Yi, QY. et al. Synthesis, DNA-binding, molecular docking and cytotoxic activity in vitro evaluation of ruthenium(II) complexes. Transit Met Chem 44, 11–24 (2019). https://doi.org/10.1007/s11243-018-0264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0264-y

Navigation