Advertisement

Transition Metal Chemistry

, Volume 43, Issue 5, pp 409–420 | Cite as

Surfactant-stabilized nano-metal hexacyanoferrates with electrocatalytic and heterogeneous catalytic applications

  • Stefaans J. Gerber
  • Elizabeth Erasmus
Article
  • 61 Downloads

Abstract

Nano-sized metal hexacyanoferrates of the formula KxMy[Fe(CN)6]z·qH2O, where M = Co, Ni or Cu (and x, y, z and q are stoichiometric numbers), were prepared by reverse emulsion. The resulting nano-materials were characterized utilizing physico-chemical and spectroscopic methods. Evaluation of Fourier-transformed infrared absorption peaks located in the C≡N stretching frequency area 2050–2200 cm−1 confirmed the presence of the metal-cyano-chains with mixed oxidation states for both metals in the samples (FeII/III–C≡N–MII/III). Ratios of the different oxidation states of each metal could be calculated from the X-ray photoelectron spectroscopy data, Co 1.12 II /Co 0.56 III :Fe 0.44 II /Fe 0.56 III , Ni 0.52 II /Ni 0.46 III :Fe 0.46 II /Fe 0.54 III and Cu 0.65 II /Cu 1.26 III :Fe 0.50 II /Fe 0.50 III . After modification of glassy carbon and carbon paste electrodes with the metal hexacyanoferrates, the electrochemical properties of these modified electrodes were investigated by means of cyclic voltammetry. The potential application of these electrodes as electrocatalysts for the oxidation of hydrazine was investigated. Lastly, the use of the metal hexacyanoferrates as potential heterogeneous catalysts for the solvent-free oxidation of benzyl alcohol using the environmentally friendly oxidant, H2O2, was explored.

Graphical Abstract

Notes

Acknowledgements

The authors acknowledge financial support from SASOL during the course of this study.

Supplementary material

11243_2018_228_MOESM1_ESM.docx (684 kb)
Supplementary material 1 (DOCX 683 kb)

References

  1. 1.
    Sun C, Lee JSH, Zhang M (2008) Adv Drug Del Rev 60:1252–1265Google Scholar
  2. 2.
    Lines MG (2008) J All Comput 449:424–425Google Scholar
  3. 3.
    Zhang J, Ma D (2017) J Colloid Interface Sci 489:138–149Google Scholar
  4. 4.
    Banach M, Pulit-Prociak J (2017) J Clean Prod 141:1030–1039Google Scholar
  5. 5.
    MunLee K, Lai CW, Ngai KS, Juan JC (2016) Water Res 88:428–448Google Scholar
  6. 6.
    Kumar SG, Rao KSRK (2017) Appl Surf Sci 391:124–148Google Scholar
  7. 7.
    Su Q, Feng W, Yang D, Li F (2017) Acc Chem Res 50:32–40Google Scholar
  8. 8.
    Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR (2016) Anal Chim Acta 904:10–32Google Scholar
  9. 9.
    Vaucher S, Li M, Mann S (2000) Angew Chem Int Ed 39:1793–1796Google Scholar
  10. 10.
    Ali SR, Chandra P, Latwal M, Jain SK, Bansal VK, Singh SP (2011) Chin J Catal 32:1844–1849Google Scholar
  11. 11.
    Vaucher S, Fielden J, Li M, Dujardin E, Mann S (2002) Nano Lett 2:225–229Google Scholar
  12. 12.
    Jassal V, Shanker U, Shankar S (2015) J Environ Anal Chem 2(128):2380–2391Google Scholar
  13. 13.
    Ellis D, Eckhoff M, Neff VD (1981) J Phys Chem 85:1225–1231Google Scholar
  14. 14.
    Kulesza PJ (1990) Inorg Chem 29:2395–2397Google Scholar
  15. 15.
    Fiorito PA, Brett CMA, de Torresi SIC (2006) Talanta 69:403–408Google Scholar
  16. 16.
    Crespilho FN, Ghica ME, Zucolotto V, Nart FC, Oliveira ON Jr, Brett CMA (2007) Electroanal 19:805–812Google Scholar
  17. 17.
    Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochim Acta 54:1932–1938Google Scholar
  18. 18.
    Koncki R (2002) Crit Rev Anal Chem 32:79–96Google Scholar
  19. 19.
    Kaneko M, Okada T (1988) J Electroanal Chem 255:45–52Google Scholar
  20. 20.
    Gerber SJ (2016) The preparation and characterisation of nano-metal hexacyanoferrates with a potential catalytic application. MSc thesis, University of the Free StateGoogle Scholar
  21. 21.
    Eastoe J, Fragneto G, Robinson BH, Towey TF, Heenan RK, Leng FJ (1992) J Chem Soc Faraday Trans 88:461–471Google Scholar
  22. 22.
    Erasmus E (2016) Hemij Indus 70:595–601Google Scholar
  23. 23.
    Berrettoni M, Ciabocco M, Fantauzzi M, Giorgetti M, Rossi A, Caponetti E (2015) RSC Adv 5:35435–35445Google Scholar
  24. 24.
    Conradie MM, Conradie J, Erasmus E (2014) Polyhedron 79:52–59Google Scholar
  25. 25.
    Erasmus E (2016) Inorg Chim Acta 451:197–201Google Scholar
  26. 26.
    Erasmus E (2016) Polyhedron 106:18–26Google Scholar
  27. 27.
    Erasmus E, Conradie J, Muller A, Swarts JC (2007) Inorg Chim Acta 360:2277–2283Google Scholar
  28. 28.
    Erasmus E, Claassen JO, van der Westhuizen WA (2016) Water SA 42:442–448Google Scholar
  29. 29.
    Sheha RR (2012) J Colloid Interface Sci 338:21–26Google Scholar
  30. 30.
    Suemoto T, Fukaya R, Asahara A, Watanabe H, Torkor H, Ohkoshi S (2016) Curr Inorg Chem 6:10–25Google Scholar
  31. 31.
    Li K, Li M, Xue D (2012) J Phys Chem A 116:4192–4198Google Scholar
  32. 32.
    Ojwang DO, Grins J, Wardecki D, Valvo M, Renman V, Häggström L, Ericsson T, Gustafsson T, Mahmoud A, Hermann RP, Svensson G (2016) Inorg Chem 55:5924–5934Google Scholar
  33. 33.
    Eramus E, Muller AJ, Siegert U, Swarts JC (2016) J Organomet Chem 821:62–70Google Scholar
  34. 34.
    Erasmus E (2011) Inorg Chim Acta 378:95–101Google Scholar
  35. 35.
    Erasmus E (2014) J Electroanal Chem 727:1–7Google Scholar
  36. 36.
    Erasmus E, Swarts JC (2013) New J Chem 37:2862–2873Google Scholar
  37. 37.
    Trzebiatowska-Gusowska M, Gagor A, Coetsee E, Erasmus E, Swart HC, Swarts JC (2013) J Organomet Chem 745–746:393–403Google Scholar
  38. 38.
    Muller TJ, Conradie J, Erasmus E (2012) Polyhedron 33:257–266Google Scholar
  39. 39.
    Buitendach BE, Erasmus E, Landman M, Niemantsverdriet JW, Swarts JC (2016) Inorg Chem 55:1992–2000Google Scholar
  40. 40.
    Jansen van Rensburg A, Landman M, Erasmus E, van der Westhuizen D, Ferreira H, Conradie MM (2016) J Electrochim Acta 219:204–213Google Scholar
  41. 41.
    van As A, Joubert CC, Buitendach BE, Erasmus E, Conradie J, Cammidge AN, Chambrier I, Cook MJ, Swarts JC (2015) Inorg Chem 54:5329–5341Google Scholar
  42. 42.
    Jansen van Rensburg A, Landman M, Conradie MM, Erasmus E, Conradie J (2017) J Electrochim Acta 246:897–907Google Scholar
  43. 43.
    Moulder F, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. ULVAC-PHI Inc., EnzoGoogle Scholar
  44. 44.
    Vannerberg NG (1976) Chem Scr 9:122–126Google Scholar
  45. 45.
    Yatsimirskii KB, Nemoshalenko VV, Nazarenko YP, Aleshin VG, Zhilinskaya VV, Tomashevsky NA (1977) J Electron Spectrosc Relat Phenom 10:239–245Google Scholar
  46. 46.
    Kaplun MM, Smirnov YE, Mikli V, Malev VV (2001) Russ J Elecrochem 37:914–924Google Scholar
  47. 47.
    Mandale AB, Badrinarayanan S, Date SK, Sinha APB (1984) J Electron Spectrosc Relat Phenom 33:61–72Google Scholar
  48. 48.
    Riyanto, Othman MR (2015) Int J Elecrochem Sci 10:4917–4927Google Scholar
  49. 49.
    Inoue H, Fluck E (1984) Z Naturfors 39b:185–188Google Scholar
  50. 50.
    Folkesson B, Larsson R (1982) J Electron Spectrosc Relat Phenom 26:157–166Google Scholar
  51. 51.
    Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870–1876Google Scholar
  52. 52.
    Shi L, Wu T, Wang M, Li D, Zhang Y, Li J (2005) Chin J Chem 23:149–154Google Scholar
  53. 53.
    Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A, Saladino ML, Caponetti E (2010) J Phys Chem C 114:6401–6407Google Scholar
  54. 54.
    Yang M, Jiang J, Yang Y, Chen X, Shen G, Yu R (2006) Biosen Bioelectron 21:1791–1797Google Scholar
  55. 55.
    Wang Y, Wan Y, Zhang D (2010) Electrochem Commun 12:187–190Google Scholar
  56. 56.
    Kamyabi MA, Narimani O, Monfared HH (2005) J Electroanal Chem 644:67–73Google Scholar
  57. 57.
    de Sa AC, Maraldi VA, Bonfirm KS, Souza TR, Paim LL, Pereira Barbosa PF, Nakamura AP, do Carmo DR (2017) Int J Chem 9:12–21Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of the Free StateBloemfonteinRepublic of South Africa

Personalised recommendations