Surfactant-stabilized nano-metal hexacyanoferrates with electrocatalytic and heterogeneous catalytic applications



Nano-sized metal hexacyanoferrates of the formula K x M y [Fe(CN)6] z ·qH2O, where M = Co, Ni or Cu (and x, y, z and q are stoichiometric numbers), were prepared by reverse emulsion. The resulting nano-materials were characterized utilizing physico-chemical and spectroscopic methods. Evaluation of Fourier-transformed infrared absorption peaks located in the C≡N stretching frequency area 2050–2200 cm−1 confirmed the presence of the metal-cyano-chains with mixed oxidation states for both metals in the samples (FeII/III–C≡N–MII/III). Ratios of the different oxidation states of each metal could be calculated from the X-ray photoelectron spectroscopy data, Co 1.12 II /Co 0.56 III :Fe 0.44 II /Fe 0.56 III , Ni 0.52 II /Ni 0.46 III :Fe 0.46 II /Fe 0.54 III and Cu 0.65 II /Cu 1.26 III :Fe 0.50 II /Fe 0.50 III . After modification of glassy carbon and carbon paste electrodes with the metal hexacyanoferrates, the electrochemical properties of these modified electrodes were investigated by means of cyclic voltammetry. The potential application of these electrodes as electrocatalysts for the oxidation of hydrazine was investigated. Lastly, the use of the metal hexacyanoferrates as potential heterogeneous catalysts for the solvent-free oxidation of benzyl alcohol using the environmentally friendly oxidant, H2O2, was explored.

Graphical Abstract



The authors acknowledge financial support from SASOL during the course of this study.

Supplementary material

11243_2018_228_MOESM1_ESM.docx (684 kb)
Supplementary material 1 (DOCX 683 kb)


  1. 1.
    Sun C, Lee JSH, Zhang M (2008) Adv Drug Del Rev 60:1252–1265CrossRefGoogle Scholar
  2. 2.
    Lines MG (2008) J All Comput 449:424–425Google Scholar
  3. 3.
    Zhang J, Ma D (2017) J Colloid Interface Sci 489:138–149CrossRefGoogle Scholar
  4. 4.
    Banach M, Pulit-Prociak J (2017) J Clean Prod 141:1030–1039CrossRefGoogle Scholar
  5. 5.
    MunLee K, Lai CW, Ngai KS, Juan JC (2016) Water Res 88:428–448CrossRefGoogle Scholar
  6. 6.
    Kumar SG, Rao KSRK (2017) Appl Surf Sci 391:124–148CrossRefGoogle Scholar
  7. 7.
    Su Q, Feng W, Yang D, Li F (2017) Acc Chem Res 50:32–40CrossRefGoogle Scholar
  8. 8.
    Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR (2016) Anal Chim Acta 904:10–32CrossRefGoogle Scholar
  9. 9.
    Vaucher S, Li M, Mann S (2000) Angew Chem Int Ed 39:1793–1796CrossRefGoogle Scholar
  10. 10.
    Ali SR, Chandra P, Latwal M, Jain SK, Bansal VK, Singh SP (2011) Chin J Catal 32:1844–1849CrossRefGoogle Scholar
  11. 11.
    Vaucher S, Fielden J, Li M, Dujardin E, Mann S (2002) Nano Lett 2:225–229CrossRefGoogle Scholar
  12. 12.
    Jassal V, Shanker U, Shankar S (2015) J Environ Anal Chem 2(128):2380–2391Google Scholar
  13. 13.
    Ellis D, Eckhoff M, Neff VD (1981) J Phys Chem 85:1225–1231CrossRefGoogle Scholar
  14. 14.
    Kulesza PJ (1990) Inorg Chem 29:2395–2397CrossRefGoogle Scholar
  15. 15.
    Fiorito PA, Brett CMA, de Torresi SIC (2006) Talanta 69:403–408CrossRefGoogle Scholar
  16. 16.
    Crespilho FN, Ghica ME, Zucolotto V, Nart FC, Oliveira ON Jr, Brett CMA (2007) Electroanal 19:805–812CrossRefGoogle Scholar
  17. 17.
    Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochim Acta 54:1932–1938CrossRefGoogle Scholar
  18. 18.
    Koncki R (2002) Crit Rev Anal Chem 32:79–96CrossRefGoogle Scholar
  19. 19.
    Kaneko M, Okada T (1988) J Electroanal Chem 255:45–52CrossRefGoogle Scholar
  20. 20.
    Gerber SJ (2016) The preparation and characterisation of nano-metal hexacyanoferrates with a potential catalytic application. MSc thesis, University of the Free StateGoogle Scholar
  21. 21.
    Eastoe J, Fragneto G, Robinson BH, Towey TF, Heenan RK, Leng FJ (1992) J Chem Soc Faraday Trans 88:461–471CrossRefGoogle Scholar
  22. 22.
    Erasmus E (2016) Hemij Indus 70:595–601CrossRefGoogle Scholar
  23. 23.
    Berrettoni M, Ciabocco M, Fantauzzi M, Giorgetti M, Rossi A, Caponetti E (2015) RSC Adv 5:35435–35445CrossRefGoogle Scholar
  24. 24.
    Conradie MM, Conradie J, Erasmus E (2014) Polyhedron 79:52–59CrossRefGoogle Scholar
  25. 25.
    Erasmus E (2016) Inorg Chim Acta 451:197–201CrossRefGoogle Scholar
  26. 26.
    Erasmus E (2016) Polyhedron 106:18–26CrossRefGoogle Scholar
  27. 27.
    Erasmus E, Conradie J, Muller A, Swarts JC (2007) Inorg Chim Acta 360:2277–2283CrossRefGoogle Scholar
  28. 28.
    Erasmus E, Claassen JO, van der Westhuizen WA (2016) Water SA 42:442–448CrossRefGoogle Scholar
  29. 29.
    Sheha RR (2012) J Colloid Interface Sci 338:21–26CrossRefGoogle Scholar
  30. 30.
    Suemoto T, Fukaya R, Asahara A, Watanabe H, Torkor H, Ohkoshi S (2016) Curr Inorg Chem 6:10–25CrossRefGoogle Scholar
  31. 31.
    Li K, Li M, Xue D (2012) J Phys Chem A 116:4192–4198CrossRefGoogle Scholar
  32. 32.
    Ojwang DO, Grins J, Wardecki D, Valvo M, Renman V, Häggström L, Ericsson T, Gustafsson T, Mahmoud A, Hermann RP, Svensson G (2016) Inorg Chem 55:5924–5934CrossRefGoogle Scholar
  33. 33.
    Eramus E, Muller AJ, Siegert U, Swarts JC (2016) J Organomet Chem 821:62–70CrossRefGoogle Scholar
  34. 34.
    Erasmus E (2011) Inorg Chim Acta 378:95–101CrossRefGoogle Scholar
  35. 35.
    Erasmus E (2014) J Electroanal Chem 727:1–7CrossRefGoogle Scholar
  36. 36.
    Erasmus E, Swarts JC (2013) New J Chem 37:2862–2873CrossRefGoogle Scholar
  37. 37.
    Trzebiatowska-Gusowska M, Gagor A, Coetsee E, Erasmus E, Swart HC, Swarts JC (2013) J Organomet Chem 745–746:393–403CrossRefGoogle Scholar
  38. 38.
    Muller TJ, Conradie J, Erasmus E (2012) Polyhedron 33:257–266CrossRefGoogle Scholar
  39. 39.
    Buitendach BE, Erasmus E, Landman M, Niemantsverdriet JW, Swarts JC (2016) Inorg Chem 55:1992–2000CrossRefGoogle Scholar
  40. 40.
    Jansen van Rensburg A, Landman M, Erasmus E, van der Westhuizen D, Ferreira H, Conradie MM (2016) J Electrochim Acta 219:204–213CrossRefGoogle Scholar
  41. 41.
    van As A, Joubert CC, Buitendach BE, Erasmus E, Conradie J, Cammidge AN, Chambrier I, Cook MJ, Swarts JC (2015) Inorg Chem 54:5329–5341CrossRefGoogle Scholar
  42. 42.
    Jansen van Rensburg A, Landman M, Conradie MM, Erasmus E, Conradie J (2017) J Electrochim Acta 246:897–907CrossRefGoogle Scholar
  43. 43.
    Moulder F, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. ULVAC-PHI Inc., EnzoGoogle Scholar
  44. 44.
    Vannerberg NG (1976) Chem Scr 9:122–126Google Scholar
  45. 45.
    Yatsimirskii KB, Nemoshalenko VV, Nazarenko YP, Aleshin VG, Zhilinskaya VV, Tomashevsky NA (1977) J Electron Spectrosc Relat Phenom 10:239–245CrossRefGoogle Scholar
  46. 46.
    Kaplun MM, Smirnov YE, Mikli V, Malev VV (2001) Russ J Elecrochem 37:914–924CrossRefGoogle Scholar
  47. 47.
    Mandale AB, Badrinarayanan S, Date SK, Sinha APB (1984) J Electron Spectrosc Relat Phenom 33:61–72CrossRefGoogle Scholar
  48. 48.
    Riyanto, Othman MR (2015) Int J Elecrochem Sci 10:4917–4927Google Scholar
  49. 49.
    Inoue H, Fluck E (1984) Z Naturfors 39b:185–188Google Scholar
  50. 50.
    Folkesson B, Larsson R (1982) J Electron Spectrosc Relat Phenom 26:157–166CrossRefGoogle Scholar
  51. 51.
    Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870–1876CrossRefGoogle Scholar
  52. 52.
    Shi L, Wu T, Wang M, Li D, Zhang Y, Li J (2005) Chin J Chem 23:149–154CrossRefGoogle Scholar
  53. 53.
    Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A, Saladino ML, Caponetti E (2010) J Phys Chem C 114:6401–6407CrossRefGoogle Scholar
  54. 54.
    Yang M, Jiang J, Yang Y, Chen X, Shen G, Yu R (2006) Biosen Bioelectron 21:1791–1797CrossRefGoogle Scholar
  55. 55.
    Wang Y, Wan Y, Zhang D (2010) Electrochem Commun 12:187–190CrossRefGoogle Scholar
  56. 56.
    Kamyabi MA, Narimani O, Monfared HH (2005) J Electroanal Chem 644:67–73CrossRefGoogle Scholar
  57. 57.
    de Sa AC, Maraldi VA, Bonfirm KS, Souza TR, Paim LL, Pereira Barbosa PF, Nakamura AP, do Carmo DR (2017) Int J Chem 9:12–21CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of the Free StateBloemfonteinRepublic of South Africa

Personalised recommendations