Transition Metal Chemistry

, Volume 43, Issue 5, pp 397–408 | Cite as

Solvent and polyoxometalate tuned cobalt supramolecular hybrids with a bis-imidazolyl-bis-amide ligand: adsorption of dyes and electrocatalytic properties

  • Xiuli Wang
  • Shan Zhang
  • Xiang Wang
  • Guocheng Liu
  • Hongyan Lin
  • Huixiu Zhang


Reactions of various polyoxometalates (POMs) in the presence of 1,2-bis(1H-imidazole-4-carboxamido)metaphenylene (L) and Co(II) gave four supramolecular hybrids, {[CoL(H2O)[β-Mo8O26]0.5]}·H2O (1), [Co2L2(H2O)4][β-Mo8O26]·4DMF·2H2O (2), [Co(HL)2(H2O)2][SiW12O40]·6H2O (3) and [Co(HL)2(H2O)2][SiW12O40]·3H2O (4), in which two different metal–organic segments are formed from L ligands and Co(II) atoms with different POMs. The hydrogen bonding interactions between these segments and the POMs are thought to be responsible for the different supramolecular structures. The adsorption activities of these hybrids toward organic dyes have been investigated, together with their electrocatalytic properties.

Graphical Abstract

Four supramolecular hybrids tuned by POMs and solvents have been synthesized in cobalt/bis-imidazolyl-bis-amide ligand reaction systems, displaying different adsorption activities toward dyes and electrocatalytic properties.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21671025, 21471021, 130028719, and YJC20170021) and Program for Distinguished Professor of Liaoning Province (No. 2015399).

Supplementary material

11243_2018_227_MOESM1_ESM.doc (8.8 mb)
Supplementary material 1 (DOC 8986 kb)


  1. 1.
    Proust A, Thouvenot R, Gouzerh P (2008) Chem Commun 0:1837–1852CrossRefGoogle Scholar
  2. 2.
    Hirano T, Uehara K, Kamata K, Mizuno N (2012) J Am Chem Soc 134:6425–6433CrossRefGoogle Scholar
  3. 3.
    Long DL, Burkholder E, Cronin L (2007) Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  4. 4.
    Jeong J, Suzuki K, Yamaguchi K, Mizuno N (2017) New J Chem 41:13226–13229CrossRefGoogle Scholar
  5. 5.
    Huang P, Wang XJ, Qi JJ, Wang XL, Huang M, Wu HY, Qin C, Su ZM (2017) J Mater Chem A 5:22970–22974CrossRefGoogle Scholar
  6. 6.
    Pichon C, Mialane P, Dolbecq A et al (2008) Inorg Chem 47:11120–11128CrossRefGoogle Scholar
  7. 7.
    Rhule JT, Hill CL, Judd DA (1998) Chem Rev 98:327–358CrossRefGoogle Scholar
  8. 8.
    Kuang XF, Wu XY, Yu RM, Donahue JP, Huang JS, Lu CZ (2010) Nat Chem 2:461–465CrossRefGoogle Scholar
  9. 9.
    Ma FJ, Liu SX, Sun CY, Liang DD, Ren GJ, Wei F, Ya YG, Su ZM (2011) J Am Chem Soc 133:4178–4181CrossRefGoogle Scholar
  10. 10.
    Zheng ST, Zhang J, Li XX, Fang WH, Yang GY (2010) J Am Chem Soc 132:15102–15103CrossRefGoogle Scholar
  11. 11.
    An HY, Wang EB, Xiao DR, Li YG, Su ZM, Xu L (2006) Angew Chem Int Ed 45:904–908CrossRefGoogle Scholar
  12. 12.
    Li SB, Ma HY, Pang HJ, Zhang L (2014) Cryst Growth Des 14:4450–4460CrossRefGoogle Scholar
  13. 13.
    Wang XL, Li N, Tian AX, Ying J, Li TJ, Lin XL, Luan J, Yang Y (2014) Inorg Chem 53:7118–7129CrossRefGoogle Scholar
  14. 14.
    Romanenko I, Lechner M, Wendler F, Hörenz C, Streb C, Schacher FH (2017) J Mater Chem A 5:15789–15796CrossRefGoogle Scholar
  15. 15.
    Sun JW, Yan PF, An GH, Sha JQ, Wang C, Li GM (2016) Dalton Trans 45:1657–1667CrossRefGoogle Scholar
  16. 16.
    Wang XL, Xu N, Zhao XZ, Zhang JW, Gong CH, Li TJ (2015) CrystEngComm 17:7038–7047CrossRefGoogle Scholar
  17. 17.
    Inman C, Knaust JM, Keller SW (2002) Chem Commun 0:156–157CrossRefGoogle Scholar
  18. 18.
    Zou C, Zhang J, Xu X, Gong QH, Li J, Wu CD (2012) J Am Chem Soc 134:87–90CrossRefGoogle Scholar
  19. 19.
    Wang XL, Zhang S, Wang X, Liu GC, Lin HY, Zhang HX (2017) Dalton Trans 46:16580–16588CrossRefGoogle Scholar
  20. 20.
    Sarkar M, Biradha K (2006) Cryst Growth Des 6:202–208CrossRefGoogle Scholar
  21. 21.
    Sheldrick GM (2008) Acta Crystallogr Sect A Found Crystallogr 64:112–122CrossRefGoogle Scholar
  22. 22.
    Wang XL, Zhang JX, Liu GC, Lin HY, Chen YQ, Kang ZH (2011) Inorg Chim Acta 368:207–215CrossRefGoogle Scholar
  23. 23.
    Deltcheff CR, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216CrossRefGoogle Scholar
  24. 24.
    Sha JQ, Peng J, Tian AX, Liu HS, Chen J, Zhang PP, Su ZM (2007) Cryst Growth Des 7:2535–2541CrossRefGoogle Scholar
  25. 25.
    Soulti KD, TroganisA Papaioannou A, Kabannos TA, Keramidas AD, Deligiannakis YG, Raptopoulou CP, Terzis A (1998) Inorg Chem 37:6785–6794CrossRefGoogle Scholar
  26. 26.
    Berreau LM, Halfen JA, Young VG Jr, Tolman WB (1998) Inorg Chem 37:1091–1098CrossRefGoogle Scholar
  27. 27.
    Liu L, Wang B, JH Lv, Yu K, Wang L, Zhang H, Zhou BB (2017) CrystEngComm 19:5653–5661CrossRefGoogle Scholar
  28. 28.
    Huo M, Yang WB, Zhang HL et al (2016) RSC Adv 6:111549–111555CrossRefGoogle Scholar
  29. 29.
    Farhadi S, Mahmoudi F, Amini MM, Dusek M, Jarosova M (2017) Dalton Trans 46:3252–3264CrossRefGoogle Scholar
  30. 30.
    Wang XL, Rong X, Lin H, Liu DN, Wang X, Liu GC, Song G (2017) Polyhedron 126:92–99CrossRefGoogle Scholar
  31. 31.
    Yan W, Han LJ, Jia HL, Shen K, Wang T, Zheng HG (2016) Inorg Chem 55:8816–8821CrossRefGoogle Scholar
  32. 32.
    Fernandes DM, Teixeira A, Freire C (2015) Langmuir 31:1855–1865CrossRefGoogle Scholar
  33. 33.
    Dong SJ, Xi XD, Tian MJ (1995) Electroanal Chem 385:227–233CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xiuli Wang
    • 1
  • Shan Zhang
    • 1
  • Xiang Wang
    • 1
  • Guocheng Liu
    • 1
  • Hongyan Lin
    • 1
  • Huixiu Zhang
    • 1
  1. 1.Department of ChemistryBohai UniversityJinzhouPeople’s Republic of China

Personalised recommendations