Complexation of hydroxamate-based siderophores with cobalt(II/III): growth inhibitory effect of cobalt(III)-desferricoprogen complex on fungi

  • Etelka Farkas
  • Orsolya Szabó
  • Gyöngyi Gyémánt
  • Szilvia Szaniszló
  • Zsuzsa Szabó
  • István Pócsi


Solution equilibrium results for Co(II) and Co(III) complexes of two natural hydroxamate-based siderophores, the exocyclic desferricrocin (DFR) and the endocyclic triacetylfusarinine (TAF) are presented. The three hydroxamate chelating functions of TAF were found to complete the octahedral coordination sphere of a Co(II) ion in stepwise processes, but following the coordination of two hydroxamates of DFR practically in one step, the third function, most probably because of sterical reasons, remained uncoordinated. A comparison with corresponding results for the previously studied acyclic desferrioxamine B (DFB) and desferricoprogen (DFC) provided some information about the effects of the molecular framework of siderophores on their cobalt-binding ability. The oxidation of the central metal ion under basic conditions and investigation of the cobalt(III) complexes by cyclic voltammetry were also made. Compared to Fe(III), by several orders of magnitude, higher stability complexes were formed with Co(III). The possibility of any effect of the Co(III)-siderophore complex on microbial Fe(III) uptake was tested by investigation of the antifungal effect of Co(III)-DFC in comparison with that of CoCl2 on two fungi cultures, Penicillium brevicompactum and Aspergillus fumigatus.



I.Pócsi thanks Mrs. Sára Orsolya Mancsiczky and Katalin Szabó for carrying out some of the biological tests. The research was supported by the EU and co-financed by the European Regional Development Fund under the project GINOP-2.3.2-15-2016-00008 and the Hungarian Scientific Research Fund (OTKA K112317).

Supplementary material

11243_2018_225_MOESM1_ESM.pdf (113 kb)
Supplementary material 1 (PDF 113 kb)


  1. 1.
    Farkas E, Kozma E, Petho M, Herlihy KM, Micera G (1998) Polyhedron 17:3331–3342CrossRefGoogle Scholar
  2. 2.
    Codd R (2008) Coord Chem Rev 252:1387–1408CrossRefGoogle Scholar
  3. 3.
    Liu ZD, Hider RC (2002) Coord Chem Rev 232:151–171CrossRefGoogle Scholar
  4. 4.
    Muri EMF, Nieto MJ, Sindelar RD, Williamson JS (2002) Current Med Chem 9:1631–1653CrossRefGoogle Scholar
  5. 5.
    Serra P, Bruczko PM, Zapico JM, Puckowska A, Garcia MA, Martin-Santamaria S, Ramos A, de Pascual-Teresa B (2012) Curr Med Chem 19:1036–1064CrossRefGoogle Scholar
  6. 6.
    Wojtowicz-Praga SM, Dickson RB, Hawkins MJ (1997) Invest New Drugs 15:61–75CrossRefGoogle Scholar
  7. 7.
    Marks PA, Xu WS (2009) J Cell Biochem 107:600–608CrossRefGoogle Scholar
  8. 8.
    Bonnitcha PD, Kim BJ, Hocking R, Clegg JK, Turner P, Neville SM, Hambley TW (2012) Dalton Trans 41:11293–11304CrossRefGoogle Scholar
  9. 9.
    Winkelmann G (2002) Biochem Soc Trans 30:691–696CrossRefGoogle Scholar
  10. 10.
    Miethke M, Marahiel MA (2007) Microbiol Molbiol Rev 413–451Google Scholar
  11. 11.
    Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Mycol Res 106:1123–1142CrossRefGoogle Scholar
  12. 12.
    Johnson L (2008) Mycol Res 112:170–183CrossRefGoogle Scholar
  13. 13.
    Butler A, Theisen RM (2010) Coord Chem Rev 254:288–296CrossRefGoogle Scholar
  14. 14.
    Crumbliss AL, Harrington JM (2009) Adv Inorg Chem 61:179–250CrossRefGoogle Scholar
  15. 15.
    Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Inorg Chem 28:2189–2195CrossRefGoogle Scholar
  16. 16.
    Enyedy ÉA, Pócsi I, Farkas E (2004) J Inorg Biochem 98:1957–1966CrossRefGoogle Scholar
  17. 17.
    Farkas E, Bátka D, Kremper G, Pócsi I (2008) J Inorg Biochem 102:1654–1659CrossRefGoogle Scholar
  18. 18.
    Szabó O, Farkas E (2011) Inorg Chim Acta 376:500–508CrossRefGoogle Scholar
  19. 19.
    Farkas E, Szabó O, Parajdi-Losonczi PL, Balla GY, Pócsi I (2014) J Inorg Biochem 139:30–37CrossRefGoogle Scholar
  20. 20.
    Farkas E, Enyedy ÉA, Zékány L, Deák GY (2001) J Inorg Biochem 83:107–114CrossRefGoogle Scholar
  21. 21.
    Farkas E, Enyedy ÉA, Fábián I (2003) Inorg Chem Comm 6:131–134CrossRefGoogle Scholar
  22. 22.
    Duckworth OW, Bargar JR, Jarzecki AA, Oyerinde O, Spiro TG, Sposito G (2009) Marine Chem 113:114–122CrossRefGoogle Scholar
  23. 23.
    Kruft BI, Harrington JM, Duckworth OW, Jarzecki AA (2013) J Inorg Biochem 129:150–161CrossRefGoogle Scholar
  24. 24.
    Albrecht-Gary AM, Crumbliss AL (1998) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 35. Marcel Dekker Inc, New York, pp 239–328Google Scholar
  25. 25.
    Farkas E, Szabó O (2012) Inorg Chim Acta 392:354–361CrossRefGoogle Scholar
  26. 26.
    Ndagijimana M, Chaves-López C, Corsetti A, Tofalo R, Sergi M, Paparella A, Guerzoni ME, Suzzi G (2008) Int J Food Microbiol 127:276–283CrossRefGoogle Scholar
  27. 27.
    Shaligram NS, Singh SK, Singhal RS, Pandey A, Szakacs G (2009) Appl Biochem Biotechnol 159:505–520CrossRefGoogle Scholar
  28. 28.
    Kousha M, Tadi R, Soubani AO (2011) Eur Respir Rev 20(121):156–174CrossRefGoogle Scholar
  29. 29.
    Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Mol Cell Biol 1:94–100CrossRefGoogle Scholar
  30. 30.
    Hördt W, Römheld V, Winkelmann G (2000) Biometals 13:37–46CrossRefGoogle Scholar
  31. 31.
    Leiter E, Emri T, Gyémánt G, Nagy I, Pócsi I, Winkelmann G, Pócsi I (2001) Folia Microbiol 46:127–132CrossRefGoogle Scholar
  32. 32.
    Ong SA, Neilands JB (1979) J Agric Food Chem 27:990–995CrossRefGoogle Scholar
  33. 33.
    Emri T, Tóth V, Nagy CT, Nagy G, Pócsi I, Gyémánt G, Antal K, Balla J, Balla G, Román G, Kovács I, Pócsi I (2013) J Sci Food Agric 93:2221–2228CrossRefGoogle Scholar
  34. 34.
    Tóth V, Antal K, Gyémánt G, Miskei M, Pócsi I, Emri T (2009) Acta Biol Hung 60:321–328CrossRefGoogle Scholar
  35. 35.
    Pócsi I, Jeney V, Kertai P, Pócsi I, Emri T, Gyémánt G, Fésüs L, Balla J, Balla G (2008) Mol Nutr Food Res 52:1434–1447CrossRefGoogle Scholar
  36. 36.
    Szigeti ZM, SzaniszlĂł S, Fazekas E, Gyémánt G, Szabon J, Antal K, Emri T, Balla J, Balla G, Csernoch L, Pócsi I (2014) Acta Microbiol Immunol Hung 61:107–119CrossRefGoogle Scholar
  37. 37.
    Gran G (1950) Acta Chem Scand 4:559–577CrossRefGoogle Scholar
  38. 38.
    Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475–488CrossRefGoogle Scholar
  39. 39.
    Zékány L, Nagypál I (1985) In: Legett D (ed) Computational methods for the determination of stability constants. Plenum Press, New YorkGoogle Scholar
  40. 40.
    Baes CF Jr, Messmer RF (1976) The hydrolysis of cations. Willey, New YorkGoogle Scholar
  41. 41.
    Kolthoff IM, Tomsicek WJ (1935) J Phys Chem 39:945–954CrossRefGoogle Scholar
  42. 42.
    Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker, INC, New York and BaselGoogle Scholar
  43. 43.
    Hegedűs N, Leiter É, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I (2011) J Basic Microbiol 51:561–571CrossRefGoogle Scholar
  44. 44.
    Leiter É, Park HS, Kwon NJ, Han KH, Emri T, Oláh V, Mészáros I, Dienes B, Vincze J, Csernoch L, Yu JH, Pócsi I (2016) Sci Rep 6:20523. CrossRefGoogle Scholar
  45. 45.
    Leslie JF, Summerell B (2006) Fusarium laboratory manual. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  46. 46.
    Yao Y, Wang MH, Zhao KY, Wang CC (1998) J Biochem Biophys Methods 36:119–130CrossRefGoogle Scholar
  47. 47.
    Balázs A, Pócsi I, Hamari Z, Leiter E, Emri T, Miskei M, Oláh J, Tóth V, Hegedüs N, Prade RA, Molnár M, Pócsi I (2010) Mol Genet Genomics 283:289–303CrossRefGoogle Scholar
  48. 48.
    Yin WB, Reinke AW, Szilágyi M, Emri T, Chiang YM, Keating AE, Pócsi I, Wang CC, Keller NP (2013) Microbiol 159:77–88CrossRefGoogle Scholar
  49. 49.
    Crawford A, Wilson D (2015) FEMS Yeast Res. Google Scholar
  50. 50.
    Schrettl M, Haas H (2011) Curr Opin Microbiol 14:400–405CrossRefGoogle Scholar
  51. 51.
    Haas H (2014) Nat Prod Rep 31:1266–1276CrossRefGoogle Scholar
  52. 52.
    Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H (2003) Biochem J 371(Pt 2):505–513CrossRefGoogle Scholar
  53. 53.
    Spellberg B, Ibrahim AS, Chin-Hong PV, Kontoyiannis DP, Morris MI, Perfect JR, Fredricks D, Brass EP (2012) J Antimicrob Chemother 67:715–722CrossRefGoogle Scholar
  54. 54.
    Haas H, Petrik M, Decristoforo C (2015) PLoS Pathog 11:e1004568CrossRefGoogle Scholar
  55. 55.
    Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E (2016) Coord Chem Rev. Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Etelka Farkas
    • 1
  • Orsolya Szabó
    • 1
  • Gyöngyi Gyémánt
    • 1
  • Szilvia Szaniszló
    • 2
  • Zsuzsa Szabó
    • 2
  • István Pócsi
    • 2
  1. 1.Department of Inorganic and Analytical Chemistry, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Biotechnology and Microbiology, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary

Personalised recommendations