Transition Metal Chemistry

, Volume 43, Issue 4, pp 313–322 | Cite as

Syntheses, structures, and catalytic activity in Friedel–Crafts acylations of substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes

  • Tong Li
  • Xin-Long Yan
  • Zhan-Wei Li
  • Zhi-Hong Ma
  • Su-Zhen Li
  • Zhan-Gang Han
  • Xue-Zhong Zheng
  • Jin Lin


Reactions of the substituted tetramethylcyclopentadienes [C5HMe4R] [R =  t Bu, Ph, CH2CH2C(CH3)3] with Mo(CO)3(CH3CN)3 in refluxing xylene gave a series of dinuclear molybdenum carbonyl complexes [(η5-C5Me4R)Mo(CO)3]2 [R =  t Bu (1), Ph (2), CH2CH2C(CH3)3 (3)], [(η5-C5Me t Bu)Mo(μ-CO)2]2 (4)], and [(η5-C5Me4) t Bu]2Mo2O4(μ-O) (5)], respectively. Complexes 15 were characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopy. In addition, their crystal structures were determined by X-ray crystal diffraction analysis. The catalytic activities of complexes 13 in Friedel–Crafts acylation in the presence of o-chloranil has also been investigated; the reactions were achieved under mild conditions to give the corresponding products in moderate yields.



The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21372061), the Hebei Natural Science Foundation of China (No. B2017205006), and the Key Research Fund of Hebei Normal University (No. L2017Z02).

Supplementary material

11243_2018_217_MOESM1_ESM.doc (494 kb)
The structure and characterization data for related catalytic products. (DOC 494 kb)


  1. 1.
    Tang MC, Chan AKW, Chan MY, Yam VWW (2016) Top Curr Chem 374:46CrossRefGoogle Scholar
  2. 2.
    Chelucci G, Baldino S, Baratta W (2015) Coord Chem Rev 300:29CrossRefGoogle Scholar
  3. 3.
    Younus HA, Su W, Ahmad N, Chen S, Verpoort F (2015) Adv Synth Catal 357:283CrossRefGoogle Scholar
  4. 4.
    Li H, Zheng B, Huang KW (2015) Coord Chem Rev 293–294:116CrossRefGoogle Scholar
  5. 5.
    Gunanathan C, Milstein D (2014) Chem Rev 114:12024CrossRefGoogle Scholar
  6. 6.
    Zhao B, Han Z, Ding K (2013) Angew Chem Int Ed 52:4744CrossRefGoogle Scholar
  7. 7.
    Butenschön H (2000) Chem Rev 100:1527CrossRefGoogle Scholar
  8. 8.
    Siemeling U (2000) Chem Rev 100:1495CrossRefGoogle Scholar
  9. 9.
    Choudhury J, Podder S, Roy S (2005) J Am Chem Soc 127:6162CrossRefGoogle Scholar
  10. 10.
    Kodomari M, Nagamatsu M, Akaike M, Aoyama T (2008) Tetrahedron Lett 49:2537CrossRefGoogle Scholar
  11. 11.
    Li Z, Duan Z, Kang J, Wang H, Yu L, Wu Y (2008) Tetrahedron 64:1924CrossRefGoogle Scholar
  12. 12.
    Liu CR, Li MB, Yang CF, Tian SK (2008) Chem Commun 54:1249CrossRefGoogle Scholar
  13. 13.
    Jaratjaroonphong J, Sathalalai S, Techasauvapak P, Reutrakul V (2009) Tetrahedron Lett 50:6012CrossRefGoogle Scholar
  14. 14.
    Wilsdorf M, Leichnitz D, Reissig HU (2013) Org Lett 15:2494CrossRefGoogle Scholar
  15. 15.
    Leng YX, Chen F, Zuo L, Duan WH (2010) Tetrahedron Lett 51:2370CrossRefGoogle Scholar
  16. 16.
    Barbero M, Cadamuro S, Dugghera S, Magistris C, Venturello P (2011) Org Biomol Chem 9:8393CrossRefGoogle Scholar
  17. 17.
    Jha A, Garade AC, Shirai M, Rode CV (2013) Appl Clay Sci 74:141CrossRefGoogle Scholar
  18. 18.
    Prakash SGK, Fogassy G, Olah GA (2010) Catal Lett 138:155CrossRefGoogle Scholar
  19. 19.
    Ma ZH, Lv LQ, Wang H, Han ZG, Zheng XZ, Lin J (2016) Transit Met Chem 41:225CrossRefGoogle Scholar
  20. 20.
    Li Z, Ma ZH, Wang H, Han ZG, Zheng XZ, Lin J (2016) Transit Met Chem 41:647CrossRefGoogle Scholar
  21. 21.
    Ma ZH, Zhang XL, Wang H, Han ZG, Zheng XZ, Lin J (2017) J Coord Chem 70:709CrossRefGoogle Scholar
  22. 22.
    Li ZW, Ma ZH, Li SZ, Han ZG, Zheng XZ, Lin J (2017) Transit Met Chem 42:137CrossRefGoogle Scholar
  23. 23.
    Ma ZH, Li ZW, Qin M, Li SZ, Han ZG, Zheng XZ, Lin J (2017) Chin J Inorg Chem 33:1074Google Scholar
  24. 24.
    Zhang N, Ma ZH, Li SZ, Han ZG, Zheng XZ, Lin J (2017) Chin J Inorg Chem 33:1497Google Scholar
  25. 25.
    Bensley DM (1988) J Org Chem 53:4417CrossRefGoogle Scholar
  26. 26.
    Enders M, Ludwig G, Pritzkow H (2001) Organometallics 20:827CrossRefGoogle Scholar
  27. 27.
    Tate DP, Knipple WR, Aug JM (1962) Inorg Chem 1:433CrossRefGoogle Scholar
  28. 28.
    Lin J, Gao P, Li B, Xu SS, Song HB, Wang BQ (2006) Inorg Chim Acta 359:4503CrossRefGoogle Scholar
  29. 29.
    Ma ZH, Zhao MX, Li F, Liu XH, Lin J (2009) Chin J Inorg Chem 25:1699Google Scholar
  30. 30.
    Ma ZH, Zhao MX, Lin LZ, Han ZG, Lin J (2010) Chin J Inorg Chem 26:1908Google Scholar
  31. 31.
    Adams RD, Collins DM, Cotton FA (1974) Inorg Chem 13:1086CrossRefGoogle Scholar
  32. 32.
    Chen SS, Wang JX, Wang XK, Wang HG (1993) Chin J Struct Chem 12:229Google Scholar
  33. 33.
    García ME, Melon S, Ramos A, Riera V, Ruiz MA, Belletti D, Graiff C, Tiripicchio A (2003) Organometallics 22:1983CrossRefGoogle Scholar
  34. 34.
    Adatia T, McPartlin M, Mays MJ, Morris MJ, Raithby PR (1989) J Chem Soc, Dalton Trans, 1555Google Scholar
  35. 35.
    Kyba EP, Mather JD, Hasset KL, McKennis JS, Davis RE (1984) J Am Chem Soc 106:5371CrossRefGoogle Scholar
  36. 36.
    Faller JW, Ma Y (1988) J Organomet Chem 340:59CrossRefGoogle Scholar
  37. 37.
    Yamamoto Y, Itonaga K (2008) Chem Eur J 14:10705CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tong Li
    • 1
  • Xin-Long Yan
    • 1
  • Zhan-Wei Li
    • 1
  • Zhi-Hong Ma
    • 2
  • Su-Zhen Li
    • 3
  • Zhan-Gang Han
    • 1
  • Xue-Zhong Zheng
    • 1
  • Jin Lin
    • 1
  1. 1.The College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.School of PharmacyHebei Medical UniversityShijiazhuangChina
  3. 3.Hebei College of Industry and TechnologyShijiazhuangChina

Personalised recommendations