Skip to main content
Log in

3-Aminoquinazoline–phosphine ligands and their ruthenium(II) complexes: application in catalytic hydrogenation and transfer hydrogenation reactions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 20 February 2018

This article has been updated

Abstract

3-Aminoquinazolinone–phosphine proligands (5ae) and their Ru(II) complexes (6ae) were prepared and characterized by NMR (1H, 13C, 31P{1H}), FTIR and microanalysis. The 3-aminoquinazolinone–phosphine ligands were found to coordinate with the Ru(II) center via their phosphorus and nitrogen atoms. The Ru(II) complexes were applied as catalysts for the hydrogenation and transfer hydrogenation of prochiral ketones. The results showed that these complexes are efficient transfer hydrogenation catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Change history

  • 20 February 2018

    In the initial online publication, there was a mistake in the title. The first words read “3-Aminoquinazolinone–phosphine” instead of “3-Aminoquinazolinone–phosphine”. The original article has been corrected.

References

  1. Raja MU, Sindhuja E, Ramesh R (2010) Arene ruthenium(II) p-chloroacetophenone phenylthiosemicarbazone complex mediated transfer hydrogenation of ketones. Inorg Chem Commun 13:1321–1324

    Article  CAS  Google Scholar 

  2. Keleş M, Şahinoğlu C, Emir DM, Mart M (2014) New iminophosphine-Ru(II) complexes and their application in hydrogenation and transfer hydrogenation. Appl Organometal Chem 28:768–772

    Article  Google Scholar 

  3. Ohkuma T (2010) Asymmetric hydrogenation of ketones: tactics to achieve high reactivity, enantioselectivity, and wide scope. Proc Jpn Acad Ser B 86:202–219

    Article  CAS  Google Scholar 

  4. Madern N, Talbi B, Salmain M (2013) Aqueous phase transfer hydrogenation of aryl ketones catalysed by achiral ruthenium(II) and rhodium(III) complexes and their papain conjugates. Appl Organometal Chem 27:6–12

    Article  CAS  Google Scholar 

  5. Doucet H, Ohkuma T, Murata K, Yokozawa T, Kozawa M, Katayama E, England AF, Ikariya T, Noyori R (1998) Trans-[RuCl2(phosphane)2(1,2-diamine)] and chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: shelf-Stable Precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew Chem Int Ed 37:1703–1707

    Article  CAS  Google Scholar 

  6. Mizushima E, Ohi H, Yamaguchi M, Yamagishi T (1999) Asymmetric transfer hydrogenation of aryl-alkyl ketones catalyzed by ruthenium (II) complexes having chiral pyridylmethylamine and phosphine ligands. J Mol Catal A: Chem 149:43–49

    Article  CAS  Google Scholar 

  7. Gao JX, Ikariya T, Noyori R (1996) A ruthenium(II) complex with a C2-symmetric diphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromatic ketones. Organometallics 15:1087–1089

    Article  CAS  Google Scholar 

  8. Balakrishna MS, Panda R, Smith DC, Klaman A, Nolan SP (2000) Ruthenium(II) chemistry of phosphorus-based ligands, Ph2PN(R)PPh2 (R = Me or Ph) and Ph2PN(Ph)P(E)Ph2 (E = S or Se). Solution thermochemical study of ligand substitution reactions in the Cp’RuCl(COD) (Cp’ = Cp, Cp*; COD = cyclooctadiene) system. J Organomet Chem 599:159–165

    Article  CAS  Google Scholar 

  9. Warton WL, Tanaka S, Hauser CMS, Öztopcu Ö, Hsieh JC, Mereiter K, Kirchner K (2010) Synthesis and characterization of ruthenium p-cymene complexes bearing bidentate P–N and E–N ligands (E = S, Se) based on 2-aminopyridine. Polyhedron 29:3097–3102

    Article  Google Scholar 

  10. Ohkuma T, Ooka H, Hashiguchi S, Ikariya T, Noyori R (1995) Practical enantioselective hydrogenation of aromatic ketones. J Am Chem Soc 117:2675–2976

    Article  CAS  Google Scholar 

  11. Ohkuma T, Koizumi M, Doucet H, Pham T, Kozawa M, Murata K, Katayama E, Yokozawa T, Ikariya T, Noyori R (1998) Asymmetric hydrogenation of alkenyl, cyclopropyl, and aryl ketones. RuCl2(xylbinap)(1,2-diamine) as a precatalyst exhibiting a wide scope. J Am Chem Soc 120:13529–13530

    Article  CAS  Google Scholar 

  12. Noyori R, Koizumi M, Ishii D, Ohkuma T (2001) Asymmetric hydrogenation via architectural and functional molecular engineering. Pure Appl Chem 73:227–232

    Article  CAS  Google Scholar 

  13. Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed Engl 113:40–73

    Article  Google Scholar 

  14. Catir M, Cakici M, Karabuga S, Ulukanli S, Sahin E, Kilic H (2009) Synthesis of 4,4′-biquinazoline alcohols as chiral catalysts in enantioselective alkynylation of aldehydes with phenyl acetylene. Tetrahedron Asymmetry 20:2845–2853

    Article  CAS  Google Scholar 

  15. Atkinson RS, Kelly BJ, Williams J (1992) Amination with 3-acetoxyaminoquinazolin-4-(3 h)ones: preparation of α-aminoacid esters by reaction with silyl ketene acetals followed by NN bond cleavage. Tetrahedron 48:7713–7730

    Article  CAS  Google Scholar 

  16. Sehemi AGA, Atkinson RS, Fawcett J, Russell DR (1998) Stereoisomerism in 3-[N-(2-acetoxypropanoyl)-N-acylamino]quinazolin-4(3H)-ones, enantioselective acylating agents. J Chem Soc Perkin Trans 1:4413–4421

    Google Scholar 

  17. Davies DL, Duaij OA, Fawcett J, Giardiello M, Hilton ST, Russell DR (2003) Room-temperature cyclometallation of amines, imines and oxazolines with [MCl2Cp*]2(M = Rh, Ir) and [RuCl2(p-cymene)]2. Dalton Trans 21:4132–4138

    Article  Google Scholar 

  18. Aydemir M, Baysal A, Özkar S, Yıldırım LT (2011) Trans- and cis-Ru(II) aminophosphine complexes: syntheses, x-ray structures and catalytic activity in transfer hydrogenation of acetophenone derivatives. Inorg Chim Acta 367:166–172

    Article  CAS  Google Scholar 

  19. Malešević N, Srdić T, Radulović S, Sladić D, Radulović V, Brčeski I, Anđelković K (2006) Synthesis and characterization of a novel Pd(II) complex with the condensation product of 2-(diphenylphosphino)benzaldehyde and ethyl hydrazinoacetate. Cytotoxic activity of the synthesized complex and related Pd(II) and Pt(II) complexes. J Inorg Biochem 100:1811–1818

    Article  Google Scholar 

  20. Sehemi AGA, Atkinson RS, Fawcett J, Russell DR (2000) 3-(N, N-Diacylamino)quinazolin-4(3H)-ones as enantioselective acylating agents for amines. Tetrahedron Lett 41:2239–2242

    Article  Google Scholar 

  21. Barandov A, Abram U (2009) Heterofunctionalized phosphines derived from (2-formylphenyl)diphenylphosphine and their reactions with oxorhenium(V) complexes. Polyhedron 28:1155–1159

    Article  CAS  Google Scholar 

  22. Pelagatti P, Bacchi A, Carcelli M, Costa M, Fochi A, Ghidini P, Leporati E, Masi M, Pelizzi C, Giancarlo PG (1999) Palladium(II) complexes containing a P, N chelating ligand: part III. Influence of the basicity of tridentates hydrazonic ligands on the hydrogenating activity of unsaturated C–C bonds. J Organomet Chem 583:94–105

    Article  CAS  Google Scholar 

  23. Kwong HL, Cheng LS, Lee WS (1999) Enantioselective palladium catalyzed allylic substitution using chiral P, N, O Schiff base ligands. J Mol Catal A: Chem 150:23–29

    Article  CAS  Google Scholar 

  24. Lee CC, Chu WY, Liu YH, Peng SM, Liu ST (2001) Coordination and catalytic activity of ruthenium complexes containing tridentate P, N, O ligands. Eur J Inorg Chem 31:4801–4806

    Google Scholar 

  25. Dai H, Hu X, Chen H, Bai C, Zheng Z (2004) New chiral ferrocenyldiphosphine ligand for catalytic asymmetric transfer hydrogenation. J Mol Catal A 209:19–22

    Article  CAS  Google Scholar 

  26. Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Sandoval C, Noyori R (2006) The hydrogenation/transfer hydrogenation network: asymmetric hydrogenation of ketones with chiral η6-arene/N-tosylethylenediamine-ruthenium(II) catalysts. J Am Chem Soc 128:8724–8725

    Article  CAS  Google Scholar 

  27. Armarego WLE, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Pergamon Press, Oxford

    Google Scholar 

  28. Laue L, Greiner L, Wöltinger J, Liese A (2001) Continuous application of chemzymes in a membrane reactor: asymmetric transfer hydrogenation of acetophenone. Adv Synth Catal 343:711–720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Osmaniye Korkut Ata University and the Scientific and Technological Research Council of Turkey (Project Number: 109T801). The authors also thank to Prof. Dr. Sabri Ulukanlı for the synthesis of 3-aminoquinazolinones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Keleş.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11243-018-0218-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, M.K., Keleş, M. 3-Aminoquinazoline–phosphine ligands and their ruthenium(II) complexes: application in catalytic hydrogenation and transfer hydrogenation reactions. Transit Met Chem 43, 285–292 (2018). https://doi.org/10.1007/s11243-018-0213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0213-9

Navigation