Transition Metal Chemistry

, Volume 43, Issue 2, pp 193–199 | Cite as

Syntheses, structures and catalytic activities of molybdenum carbonyl complexes based on pyridine-imine ligands

Article
  • 43 Downloads

Abstract

Thermal treatment of pyridine imines [C5H4N-2-C(H)=N-C6H4-R] [R = H (1), CH3 (2), OMe (3), CF3 (4), Cl (5), Br (6)] with Mo(CO)6 in refluxing toluene provided six novel mononuclear molybdenum carbonyl complexes of the type [(η2-2-C5H4N)CH=N(C6H4-4-R)]Mo(CO)4 [R = H (7); CH3 (8); OMe (9); CF3 (10); Cl (11); Br (12)]. All of these complexes were separated by chromatography and fully characterized by elemental analysis, IR, and NMR spectroscopy. The crystal structures of complexes 7, 8 and 10 were determined by X-ray crystal diffraction analysis. In addition, the catalytic performance of these complexes was also tested, and it was found that these complexes had obvious catalytic activity on Friedel–Crafts reactions of aromatic compounds with a variety of acylation reagents.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21372061), the Hebei Natural Science Foundation of China (Nos. B2013205025, B2014205018 and B2015205116), and the Key Research Fund of Hebei Normal University (No. L2012Z02).

Supplementary material

11243_2018_207_MOESM1_ESM.doc (312 kb)
Supplementary material 1 Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 1492231, 1487562, and 1509950 for 7, 8, and 10, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44 1223 336 033, e-mail: deposit@ccdc.cam.ac. uk of www: http://www.ccdc.cam.ac.uk. The structure and characterization data for related catalytic products. (DOC 311 kb)

References

  1. 1.
    Wang Y, Wang M, Wang Y, Wang X, Wang L, Sun L (2010) J Catal 273:177CrossRefGoogle Scholar
  2. 2.
    Parra M, Hernandez S, Alderete J, Zuniga C (2000) Liq Cryst 27:995CrossRefGoogle Scholar
  3. 3.
    Kocyigit O, Guler E (2009) J Inclusion Phenom Macrocycl Chem 67:29CrossRefGoogle Scholar
  4. 4.
    Bereau V, Duhayon C, Sournia-Saquet A, Sutter JP (2012) Inorg Chem 51:1309CrossRefGoogle Scholar
  5. 5.
    Cristiano R, Ely F, Gallardo H (2005) Liq Cryst 32:15CrossRefGoogle Scholar
  6. 6.
    Xu Y, Lin L, Kanai M, Matsunaga S, Shibasaki M (2011) J Am Chem Soc 133:5791CrossRefGoogle Scholar
  7. 7.
    Peterson MD, Holbrook RJ, Meade TJ, Weiss EA (2013) J Am Chem Soc 135:13162CrossRefGoogle Scholar
  8. 8.
    Leeland JW, White FJ, Love JB (2011) J Am Chem Soc 133:7320CrossRefGoogle Scholar
  9. 9.
    Xu Y, Kaneco K, Kanai M, Shibasaki M, Matsunaga S (2014) J Am Chem Soc 136:9190CrossRefGoogle Scholar
  10. 10.
    Singh BK, Rajour HK, Prakash A (2012) Spectrochim Acta Part A 94:143CrossRefGoogle Scholar
  11. 11.
    Wang Q, Yang ZY, Qi GF, Qin DD (2009) Eur J Med Chem 44:2425CrossRefGoogle Scholar
  12. 12.
    Mohanan K, Athira CJ, Sindhu Y, Sujamol MS (2009) J Rare Earths 29:705CrossRefGoogle Scholar
  13. 13.
    Suraj B, Deshpande MN, Kolhatkar DG (2012) Int J Chem Technol Res 4:578Google Scholar
  14. 14.
    Grucarevič S, Merz V (1873) Chem Ber 6:60CrossRefGoogle Scholar
  15. 15.
    Friedel C, Crafts JM, Hebd CR (1877) Seances Acad Sci 84:1450Google Scholar
  16. 16.
    Olah GA (1973) Friedel–Crafts chemistry. Wiley, New YorkGoogle Scholar
  17. 17.
    Smith MB, March J (2007) March’s advanced organic chemistry, 6th edn. Wiley, New JerseyGoogle Scholar
  18. 18.
    Mo F, Trzepkowski LJ, Dong G (2012) Angew Chem Int Ed 51:13075CrossRefGoogle Scholar
  19. 19.
    Sartori G, Maggi R (2011) Chem Rev 111:PR181CrossRefGoogle Scholar
  20. 20.
    Ma ZH, Lv LQ, Wang H, Han ZG, Zheng XZ, Lin J (2016) Transit Met Chem 41:225CrossRefGoogle Scholar
  21. 21.
    Li Z, Ma ZH, Wang H, Han ZG, Zheng XZ, Lin J (2016) Transit Met Chem 41:647CrossRefGoogle Scholar
  22. 22.
    Ma ZH, Zhang XL, Wang H, Han ZG, Zheng XZ, Lin J (2017) J Coord Chem 70:709CrossRefGoogle Scholar
  23. 23.
    Li ZW, Ma ZH, Li SZ, Han ZG, Zheng XZ, Lin J (2017) Transit Met Chem 42:137CrossRefGoogle Scholar
  24. 24.
    Ma ZH, Li ZW, Qin M, Li SZ, Han ZG, Zheng XZ, Lin J (2017) China J Inorg Chem 33:1074Google Scholar
  25. 25.
    Zhang N, Ma ZH, Li SZ, Han ZG, Zheng XZ, Lin J (2017) China J Inorg Chem 33:1497Google Scholar
  26. 26.
    Kianfar E, Kaiser M, Knor G (2015) J Organomet Chem 799–780:13CrossRefGoogle Scholar
  27. 27.
    Datta P, Sinha C (2007) Polyhedron 26:2433CrossRefGoogle Scholar
  28. 28.
    Chien CH, Fujita S, Yamoto S, Hara T, Yamagata T, Watanabe M, Mashima K (2008) Dalton Trans 2008:916–923Google Scholar
  29. 29.
    Moya SA, Araya JC, Gajardo J, Guerchais V, Le Bozec H, Toupet L, Aguirre P (2013) Inorg Chem Commun 27:108CrossRefGoogle Scholar
  30. 30.
    Hilt G, Janikowski J, Schwarzer M, Burghaus O, Sakw D, Bröring M, Drüschler M, Huber B, Roling B, Harms K, Frenking G (2014) J Organomet Chem 749:219CrossRefGoogle Scholar
  31. 31.
    Sheldrick GM (1997) SHELXL-97, Program for crystal structure refinement. University of Göttingen, GöttingenGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.School of PharmacyHebei Medical UniversityShijiazhuangChina
  3. 3.Hebei College of Industry and TechnologyShijiazhuangChina

Personalised recommendations