Skip to main content
Log in

Synthesis, structures and magnetic properties of three copper(II) complexes of 2-(1H-pyrazol-3-yl) pyridine

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three Cu(II) complexes: [Cu2(μ-L)2(HCOO)2(H2O)2] (1), [Cu2(μ-L)2(NO3)2] (2), and [Cu4(μ-L)6(CH3COO)2]·2H2O (3) constructed from 2-(1H-pyrazol-3-yl) pyridine (HL) were synthesized and structurally characterized by X-ray single-crystal diffraction. The X-ray analyses revealed that all three complexes feature a di-ligand-bridged Cu2 unit, which is nearly planar. Each deprotonated ligand chelates one copper atom by means of N,N(pyridine-pyrazole) pocket and simultaneously bridges the other one by the N,N(pyrazole) groups. The remaining coordination sites of the Cu(II) centers are either occupied by different anionic coligands to balance the charge, or bridged by another L to develop a tetranuclear structure. Magnetic investigations reveal that the distortion of the Cu(II) coordination geometry (as described by the τ values) and the coplanarity of the Cu–(N=N)2–Cu unit have cooperative effects on the antiferromagnetic strength of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Z-X, Xu H-J, Gong X-N, Wu P-F (2009) Chin J Inorg Chem 25:1492–1496

    CAS  Google Scholar 

  2. Kaase D, Gotzmann C, Rein S, Lan Y, Kacprzak S, Klingele J (2014) Inorg Chem 53:5546–5555

    Article  CAS  Google Scholar 

  3. Gusev AN, Nemec I, Herchel R, Bayjyyev E, Nyshchimenko GA, Alexandrov GG, Eremenko IL, Trávníček Z, Hasegawa M, Linert W (2014) Dalton Trans 43:7153–7165

    Article  CAS  Google Scholar 

  4. Mishra V, Lloret F, Mukherjee R (2007) Eur J Inorg Chem 2007:2161–2170

    Article  Google Scholar 

  5. Klingele MH, Boyd PDW, Moubaraki B, Murray KS, Brooker S (2006) Eur J Inorg Chem 2006:573–589

    Article  Google Scholar 

  6. Hu TL, Li JR, Liu CS, Shi XS, Zhou JN, Bu XH, Ribas J (2006) Inorg Chem 45:162–173

    Article  CAS  Google Scholar 

  7. Tanase S, Koval IA, Bouwman E, de Gelder R, Reedijk J (2005) Inorg Chem 44:7860–7865

    Article  CAS  Google Scholar 

  8. Klingele MH, Boyd PDW, Moubaraki B, Murray KS, Brooker S (2005) Eur J Inorg Chem 2005:910–918

    Article  Google Scholar 

  9. Du M, Chen S-T, Guo Y-M, Bu X-H, Ribas J (2005) J Mol Struct 737:17–21

    Article  CAS  Google Scholar 

  10. King P, Clerac R, Anson CE, Coulon C, Powell AK (2003) Inorg Chem 42:3492–3500

    Article  CAS  Google Scholar 

  11. Mokuolu QF, Foguet-Albiol D, Jones LF, Wolowska J, Kowalczyk RM, Kilner CA, Christou G, McGowan PC, Halcrow MA (2007) Dalton Trans 14:1392–1399

    Article  Google Scholar 

  12. Jones LF, Camm KD, Kilner CA, Halcrow MA (2006) CrystEngComm 8:719

    Article  CAS  Google Scholar 

  13. Singh K, Long JR, Stavropoulos P (1998) Inorg Chem 37:1073–1079

    Article  CAS  Google Scholar 

  14. Pons J, Chadghan A, Alvarez-Larena A, Francesc Piniella J, Ros J (2001) Inorg Chem Commun 4:610–612

    Article  CAS  Google Scholar 

  15. Yang F-L, Zhu G-Z, Liang B-B, Shi Y-H, Li X-L (2017) Polyhedron 128:104–111

    Article  CAS  Google Scholar 

  16. Fleming JS, Psillakis E, Couchman SM, Jeffery JC, McCleverty JA, Ward MD (1998) J Chem Soc Dalton Trans 4:537–544

    Article  Google Scholar 

  17. Sheldrick GM (1997) SHELXS-97 program for crystal structure solution. Univ of Göttingen, Göttingen

    Google Scholar 

  18. Sheldrick GM (2016) SHELXL-2016/6 program for crystal structure refinement. Univ of Göttingen, Göttingen

    Google Scholar 

  19. Spek AL (2003) Platon. Utrecht University, Utrecht

    Google Scholar 

  20. Mukherjee J, Mukherjee R (2006) Dalton Trans 13:1611–1621

    Article  Google Scholar 

  21. Tardito S, Bussolati O, Maffini M, Tegoni M, Giannetto M, Dall’asta V, Franchi-Gazzola R, Lanfranchi M, Pellinghelli MA, Mucchino C, Mori G, Marchio L (2007) J Med Chem 50:1916–1924

    Article  CAS  Google Scholar 

  22. Leita BA, Moubaraki B, Murray KS, Smith JP, Cashion JD (2004) Chem Commun 2:156–157

    Article  Google Scholar 

  23. Satake A, Koshino H, Nakata T (2000) J Organomet Chem 595:208–214

    Article  CAS  Google Scholar 

  24. Mann KLV, Psillakis E, Jeffery JC, Rees LH, Harden NM, McCleverty JA, Ward MD, Gatteschi D, Totti F, Mabbs FE, McInnes EJL, Riedi PC, Smith GM (1999) J Chem Soc Dalton Trans 3:339–348

    Article  Google Scholar 

  25. Jones PL, Jeffery JC, Mccleverty JA, Ward MD (1997) Polyhedron 16:1567–1571

    Article  CAS  Google Scholar 

  26. Jeffery JC, Jones PL, Mann KLV, Psillakis E, Mccleverty JA, Ward MD, White CM (1997) Chem Commun 2:175–176

    Article  Google Scholar 

  27. Zhu G-Z, Xing B-B, Yang F-L, Li X-L (2014) Polyhedron 81:705–714

    Article  CAS  Google Scholar 

  28. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 7:1349–1356

    Article  Google Scholar 

  29. Ma Y-S, Yang Z, Cai W-S, Tang X-Y, Yuan R-X (2015) J Coord Chem 7:1633–1643

    Article  Google Scholar 

  30. Xu S-P, Yang F-L, Zhu G-Z, Shi H-L, Li X-L (2014) Polyhedron 68:1–9

    Article  CAS  Google Scholar 

  31. Bhowmik P, Chatterjee S, Chattopadhyay S (2013) Polyhedron 63:214–221

    Article  CAS  Google Scholar 

  32. Jayakumar K, Sithambaresan M, Aravindakshan AA, Kurup MRP (2014) Polyhedron 75:50–56

    Article  CAS  Google Scholar 

  33. Addison CC, Amos DW, Sutton D, Hoyle WHH (1967) J Chem Soc (A) 5:808–812

    Article  Google Scholar 

  34. Zou R-Q, Liu C-S, Shi X-S, Bu X-H, Ribas J (2005) CrystEngComm 7:722

    Article  CAS  Google Scholar 

  35. Wang JJ, Liu CS, Hu TL, Chang Z, Li CY, Yan LF, Chen PQ, Bu XH, Wu Q, Zhao LJ, Wang Z, Zhang XZ (2008) CrystEngComm 10:681–692

    Article  Google Scholar 

  36. Hu TL, Zou RQ, Li JR, Bu XH (2008) Dalton Trans 10:1302–1311

    Article  Google Scholar 

  37. Liu C-S, Li J-R, Li C-Y, Wang J-J, Bu X-H (2007) Inorg Chim Acta 360:2532–2540

    Article  CAS  Google Scholar 

  38. Yang F-L, Shao F, Zhu G-Z, Shi Y-H, Gao F, Li X-L (2017) ChemistrySelect 2:110–117

    Article  CAS  Google Scholar 

  39. Ajo D, Bencini A, Mani F (1988) Inorg Chem 27:2437–2444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (NSFC, 21571087, 21401085, 21401086, and 21401099), Top-notch Academic program Project (TAPP) and PAPD of Jiangsu Higher Education Institutions, Undergraduate Training Program for Innovation and Entrepreneurship of Jiangsu Normal University Kewen College (2017kw015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Lei Yang or Guang-Zhou Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, FL., Liang, BB., Zhang, JH. et al. Synthesis, structures and magnetic properties of three copper(II) complexes of 2-(1H-pyrazol-3-yl) pyridine. Transit Met Chem 43, 211–220 (2018). https://doi.org/10.1007/s11243-018-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0202-z

Navigation