Skip to main content
Log in

DNA binding, antibacterial and antifungal activities of copper(II) complexes with some S-alkenyl derivatives of thiosalicylic acid

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The biological activities of two binuclear copper(II) complexes containing S-alkenyl derivatives of thiosalicylic acid are reported [alkenyl = propenyl (L1), isobutenyl (L2)]. The structure of the complex with the S-isobutenyl derivative (C2) was confirmed by single-crystal X-ray structure analysis, which revealed that the structure consists of centrosymmetric, dinuclear complex molecules [Cu2(S-i-butenyl-thiosal)4(DMSO)2] containing two Cu(II) centers bridged by four S-isobutyl-thiosalicylate ligands in a paddle-wheel type structure. The Cu(II) atom is situated in a distorted square-pyramidal environment formed by carboxylate oxygen atoms in the basal plane and a DMSO ligand in the axial position. The reactivities of the complexes toward guanosine-5′-monophosphate (5′-GMP) were investigated. Complex C2 ([Cu2(S-i-butenyl-thiosal)4(H2O)2]) reacted more rapidly with 5′-GMP than complex C1. The interactions of complexes C1 and C2 with calf thymus DNA (CT-DNA) were examined by absorption (UV–Vis) and emission spectral studies (ethidium bromide displacement studies), revealing good DNA interaction abilities. The antimicrobial activities of the free ligands and their complexes were tested by microdilution method, and both minimal inhibitory and microbicidal concentrations were determined. All the tested substances demonstrated selective and moderate antibacterial activity on gram-positive bacteria, but low antibacterial activity on gram-negative bacteria. Also, the tested substances demonstrated low antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Med Res Rev 30:708–749

    CAS  Google Scholar 

  2. Marzano C, Pellei M, Tisato F, Santini C (2009) Anticancer Agents Med Chem 9:185–211

    Article  CAS  Google Scholar 

  3. Prudhomme M (2013) Advances in anticancer agents in medicinal chemistry. Bentham Science Publishers, Clermont-Ferrand

    Book  Google Scholar 

  4. Gielen M, Tiekink ER (2005) Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. Wiley, Chichester

    Book  Google Scholar 

  5. Goodman VL, Brewer GJ, Merajver SD (2004) Endocr Relat Cancer 11:255–263

    Article  CAS  Google Scholar 

  6. Iakovidis I, Delimaris I, Piperakis SM (2011) Mol Biol Int 2011:1–13

    Article  Google Scholar 

  7. H. Jacobelli, US Patent 20050267095

  8. Reif S, Weis B, Aeed H et al (1999) J Hepatol 31:1053–1061

    Article  CAS  Google Scholar 

  9. Serrano G, Bonillo J, Aliaga A et al (1990) J Am Acad Dermatol 23:479–483

    Article  CAS  Google Scholar 

  10. Ferrer EG, Williams PA (1997) Polyhedron 16:3323–3325

    Article  CAS  Google Scholar 

  11. Wehr-Candler T, Henderson W (2016) Coord Chem Rev 313:111–155

    Article  CAS  Google Scholar 

  12. Gilbert JG, Addison AW, Nazarenko AY, Butcher RJ (2001) Inorg Chim Acta 324:123–130

    Article  CAS  Google Scholar 

  13. Nikolić MV, Mijajlović MŽ, Jevtić VV et al (2014) Polyhedron 79:80–87

    Article  Google Scholar 

  14. Nikolić MV, Mijajlović MŽ, Jevtić VV et al (2016) J Mol Struct 1116:264–271

    Article  Google Scholar 

  15. Chohan ZH, Shad HA, Youssoufi MH, Hadda TB (2010) Eur J Med Chem 45:2893–2901

    Article  CAS  Google Scholar 

  16. Patil SA, Naik VH, Kulkarni AD, Badami PS (2010) Spectrochim Acta A Mol Biomol Spectrosc 75:347–354

    Article  Google Scholar 

  17. Shebl M, Khalil SM, Ahmed SA, Medien HA (2010) J Mol Struct 980:39

    Article  CAS  Google Scholar 

  18. Katsarou ME, Efthimiadou EK, Psomas G, Karaliota A, Vourloumis D (2008) J Med Chem 51:470–478

    Article  CAS  Google Scholar 

  19. Siddiqi ZA, Khalid M, Kumar S, Shahid M, Noor S (2010) Eur J Med Chem 45:264–269

    Article  CAS  Google Scholar 

  20. Betanzos-Lara S, Gracia-Mora I, Granada-Macyas P, Flores-Alamo M, Barba-Behrens N (2013) Inorg Chim Acta 397:94–100

    Article  CAS  Google Scholar 

  21. Abou-Hussein AA, Linert W (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 95:596–609

    Article  CAS  Google Scholar 

  22. Amer S, El-Wakiel N, El-Ghamry H (2013) J Mol Struct 1049:326–335

    Article  CAS  Google Scholar 

  23. Creaven BS, Egan DA, Karcz D (2007) J Inorg Biochem 101:1108–1119

    Article  CAS  Google Scholar 

  24. Efthimiadou EK, Katsarou ME, Karaliota A, Psomas G (2008) J Inorg Biochem 102:910–920

    Article  CAS  Google Scholar 

  25. El-Gamel NE, Zayed MA (2011) Spectrochim Acta Part A 82:414–423

    Article  CAS  Google Scholar 

  26. Geeta B, Shravankumar K, Muralidhar Reddy P (2010) Spectrochim Acta Part A 77:911–915

    Article  CAS  Google Scholar 

  27. Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Siddique A, Kumar S (2012) Eur J Med Chem 57:102–111

    Article  CAS  Google Scholar 

  28. Chalkidou E, Perdih F, Turer I, Kessissoglou PD, Psomas G (2012) J Inorg Biochem 113:55–65

    Article  CAS  Google Scholar 

  29. Bukonjić AM, Tomović DL, Nikolić MV et al (2017) J Mol Struct 1128:330–337

    Article  Google Scholar 

  30. Radić GP, Glođović VV, Radojević ID et al (2012) Polyhedron 31:69–76

    Article  Google Scholar 

  31. Tomović DL, Bukonjić AM, Kočović A et al (2017) Serb J Exp Clin Res. 18:13–18

    Google Scholar 

  32. Agilent, CrysAlis PRO (2014) PRO. England, Agilent Technologies, Yarnton, Oxfordshire

    Google Scholar 

  33. Burla MC, Camalli M, Carrozzini B et al (2003) J Appl Crystallogr 36:1103

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  35. Nardelli M (1995) J Appl Crystallogr 28:659

    Article  CAS  Google Scholar 

  36. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  37. Macrae CF, Edgington PR, McCabe P et al (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  38. Meadows KA, Liu F, Sou J, Hudson BP, McMillin DR (1993) Inorg Chem 32:2919–2923

    Article  CAS  Google Scholar 

  39. Andrews JM (2005) J Antimicrob Chemoth 56:60–76

    Article  CAS  Google Scholar 

  40. Sarker SD, Nahar L, Kumarasamy Y (2007) Methods 42:321–324

    Article  CAS  Google Scholar 

  41. Van Niekerk JN, Schoening FR (1953) Acta Crystallogr 6:227–232

    Article  Google Scholar 

  42. Reyes-Ortega Y, Alcantara-Flores JL, Hernandez-Galindo MC (2005) J Am Chem Soc 127:16312–16317

    Article  CAS  Google Scholar 

  43. Long EC, Barton JK (1990) Acc Chem Res 23:271–273

    Article  CAS  Google Scholar 

  44. Pasternack RF, Gibbs EJ, Villafranca JJ (1983) J Biochem 22:251

    Article  Google Scholar 

  45. Koumousi ES, Zampakou M, Raptopoulou CP et al (2012) Inorg Chem 51:7699–7710

    Article  CAS  Google Scholar 

  46. Rizvi MA, Zaki M, Afzal M et al (2015) Eur J Med Chem 90:876–888

    Article  CAS  Google Scholar 

  47. Meyer-Almes FJ, Porschke D (1993) Biochemistry 32:4246–4253

    Article  CAS  Google Scholar 

  48. Liu ZC, Wang BD, Yang ZY, Li Y, Qin DD, Li TR (2009) Eur J Med Chem 44:4477–4484

    Article  CAS  Google Scholar 

  49. Howe GM, Wu KC, Bauer WR (1976) Biochemistry 19:4339–4346

    Article  Google Scholar 

  50. Li DD, Tian JL, Gu W, Liu X, Yan SP (2010) J Inorg Biochem 104:171–179

    Article  CAS  Google Scholar 

  51. Jiang M, Li Y, Wu Z, Liu Z, Yan C (2009) J Inorg Biochem 103:833–844

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects 172016, 173032, 172034, 172035, 172011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gordana P. Radić or Snežana Cupara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomović, D.L., Bukonjić, A.M., Jevtić, V.V. et al. DNA binding, antibacterial and antifungal activities of copper(II) complexes with some S-alkenyl derivatives of thiosalicylic acid. Transit Met Chem 43, 137–148 (2018). https://doi.org/10.1007/s11243-018-0201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0201-0

Navigation