Advertisement

Transition Metal Chemistry

, Volume 43, Issue 2, pp 137–148 | Cite as

DNA binding, antibacterial and antifungal activities of copper(II) complexes with some S-alkenyl derivatives of thiosalicylic acid

  • Dušan Lj. Tomović
  • Andriana M. Bukonjić
  • Verica V. Jevtić
  • Zoran R. Ratković
  • Jovana V. Bogojeski
  • Ana Đeković
  • Ivana D. Radojević
  • Ljiljana R. Čomić
  • Slađana B. Novaković
  • Goran A. Bogdanović
  • Srećko R. Trifunović
  • Gordana P. Radić
  • Snežana Cupara
Article
  • 104 Downloads

Abstract

The biological activities of two binuclear copper(II) complexes containing S-alkenyl derivatives of thiosalicylic acid are reported [alkenyl = propenyl (L1), isobutenyl (L2)]. The structure of the complex with the S-isobutenyl derivative (C2) was confirmed by single-crystal X-ray structure analysis, which revealed that the structure consists of centrosymmetric, dinuclear complex molecules [Cu2(S-i-butenyl-thiosal)4(DMSO)2] containing two Cu(II) centers bridged by four S-isobutyl-thiosalicylate ligands in a paddle-wheel type structure. The Cu(II) atom is situated in a distorted square-pyramidal environment formed by carboxylate oxygen atoms in the basal plane and a DMSO ligand in the axial position. The reactivities of the complexes toward guanosine-5′-monophosphate (5′-GMP) were investigated. Complex C2 ([Cu2(S-i-butenyl-thiosal)4(H2O)2]) reacted more rapidly with 5′-GMP than complex C1. The interactions of complexes C1 and C2 with calf thymus DNA (CT-DNA) were examined by absorption (UV–Vis) and emission spectral studies (ethidium bromide displacement studies), revealing good DNA interaction abilities. The antimicrobial activities of the free ligands and their complexes were tested by microdilution method, and both minimal inhibitory and microbicidal concentrations were determined. All the tested substances demonstrated selective and moderate antibacterial activity on gram-positive bacteria, but low antibacterial activity on gram-negative bacteria. Also, the tested substances demonstrated low antifungal activity.

Notes

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects 172016, 173032, 172034, 172035, 172011).

Supplementary material

11243_2018_201_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2000 kb)

References

  1. 1.
    Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Med Res Rev 30:708–749Google Scholar
  2. 2.
    Marzano C, Pellei M, Tisato F, Santini C (2009) Anticancer Agents Med Chem 9:185–211CrossRefGoogle Scholar
  3. 3.
    Prudhomme M (2013) Advances in anticancer agents in medicinal chemistry. Bentham Science Publishers, Clermont-FerrandCrossRefGoogle Scholar
  4. 4.
    Gielen M, Tiekink ER (2005) Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Goodman VL, Brewer GJ, Merajver SD (2004) Endocr Relat Cancer 11:255–263CrossRefGoogle Scholar
  6. 6.
    Iakovidis I, Delimaris I, Piperakis SM (2011) Mol Biol Int 2011:1–13CrossRefGoogle Scholar
  7. 7.
    H. Jacobelli, US Patent 20050267095Google Scholar
  8. 8.
    Reif S, Weis B, Aeed H et al (1999) J Hepatol 31:1053–1061CrossRefGoogle Scholar
  9. 9.
    Serrano G, Bonillo J, Aliaga A et al (1990) J Am Acad Dermatol 23:479–483CrossRefGoogle Scholar
  10. 10.
    Ferrer EG, Williams PA (1997) Polyhedron 16:3323–3325CrossRefGoogle Scholar
  11. 11.
    Wehr-Candler T, Henderson W (2016) Coord Chem Rev 313:111–155CrossRefGoogle Scholar
  12. 12.
    Gilbert JG, Addison AW, Nazarenko AY, Butcher RJ (2001) Inorg Chim Acta 324:123–130CrossRefGoogle Scholar
  13. 13.
    Nikolić MV, Mijajlović MŽ, Jevtić VV et al (2014) Polyhedron 79:80–87CrossRefGoogle Scholar
  14. 14.
    Nikolić MV, Mijajlović MŽ, Jevtić VV et al (2016) J Mol Struct 1116:264–271CrossRefGoogle Scholar
  15. 15.
    Chohan ZH, Shad HA, Youssoufi MH, Hadda TB (2010) Eur J Med Chem 45:2893–2901CrossRefGoogle Scholar
  16. 16.
    Patil SA, Naik VH, Kulkarni AD, Badami PS (2010) Spectrochim Acta A Mol Biomol Spectrosc 75:347–354CrossRefGoogle Scholar
  17. 17.
    Shebl M, Khalil SM, Ahmed SA, Medien HA (2010) J Mol Struct 980:39CrossRefGoogle Scholar
  18. 18.
    Katsarou ME, Efthimiadou EK, Psomas G, Karaliota A, Vourloumis D (2008) J Med Chem 51:470–478CrossRefGoogle Scholar
  19. 19.
    Siddiqi ZA, Khalid M, Kumar S, Shahid M, Noor S (2010) Eur J Med Chem 45:264–269CrossRefGoogle Scholar
  20. 20.
    Betanzos-Lara S, Gracia-Mora I, Granada-Macyas P, Flores-Alamo M, Barba-Behrens N (2013) Inorg Chim Acta 397:94–100CrossRefGoogle Scholar
  21. 21.
    Abou-Hussein AA, Linert W (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 95:596–609CrossRefGoogle Scholar
  22. 22.
    Amer S, El-Wakiel N, El-Ghamry H (2013) J Mol Struct 1049:326–335CrossRefGoogle Scholar
  23. 23.
    Creaven BS, Egan DA, Karcz D (2007) J Inorg Biochem 101:1108–1119CrossRefGoogle Scholar
  24. 24.
    Efthimiadou EK, Katsarou ME, Karaliota A, Psomas G (2008) J Inorg Biochem 102:910–920CrossRefGoogle Scholar
  25. 25.
    El-Gamel NE, Zayed MA (2011) Spectrochim Acta Part A 82:414–423CrossRefGoogle Scholar
  26. 26.
    Geeta B, Shravankumar K, Muralidhar Reddy P (2010) Spectrochim Acta Part A 77:911–915CrossRefGoogle Scholar
  27. 27.
    Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Siddique A, Kumar S (2012) Eur J Med Chem 57:102–111CrossRefGoogle Scholar
  28. 28.
    Chalkidou E, Perdih F, Turer I, Kessissoglou PD, Psomas G (2012) J Inorg Biochem 113:55–65CrossRefGoogle Scholar
  29. 29.
    Bukonjić AM, Tomović DL, Nikolić MV et al (2017) J Mol Struct 1128:330–337CrossRefGoogle Scholar
  30. 30.
    Radić GP, Glođović VV, Radojević ID et al (2012) Polyhedron 31:69–76CrossRefGoogle Scholar
  31. 31.
    Tomović DL, Bukonjić AM, Kočović A et al (2017) Serb J Exp Clin Res. 18:13–18Google Scholar
  32. 32.
    Agilent, CrysAlis PRO (2014) PRO. England, Agilent Technologies, Yarnton, OxfordshireGoogle Scholar
  33. 33.
    Burla MC, Camalli M, Carrozzini B et al (2003) J Appl Crystallogr 36:1103CrossRefGoogle Scholar
  34. 34.
    Sheldrick GM (2008) Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  35. 35.
    Nardelli M (1995) J Appl Crystallogr 28:659CrossRefGoogle Scholar
  36. 36.
    Spek AL (2003) J Appl Crystallogr 36:7–13CrossRefGoogle Scholar
  37. 37.
    Macrae CF, Edgington PR, McCabe P et al (2006) J Appl Crystallogr 39:453–457CrossRefGoogle Scholar
  38. 38.
    Meadows KA, Liu F, Sou J, Hudson BP, McMillin DR (1993) Inorg Chem 32:2919–2923CrossRefGoogle Scholar
  39. 39.
    Andrews JM (2005) J Antimicrob Chemoth 56:60–76CrossRefGoogle Scholar
  40. 40.
    Sarker SD, Nahar L, Kumarasamy Y (2007) Methods 42:321–324CrossRefGoogle Scholar
  41. 41.
    Van Niekerk JN, Schoening FR (1953) Acta Crystallogr 6:227–232CrossRefGoogle Scholar
  42. 42.
    Reyes-Ortega Y, Alcantara-Flores JL, Hernandez-Galindo MC (2005) J Am Chem Soc 127:16312–16317CrossRefGoogle Scholar
  43. 43.
    Long EC, Barton JK (1990) Acc Chem Res 23:271–273CrossRefGoogle Scholar
  44. 44.
    Pasternack RF, Gibbs EJ, Villafranca JJ (1983) J Biochem 22:251CrossRefGoogle Scholar
  45. 45.
    Koumousi ES, Zampakou M, Raptopoulou CP et al (2012) Inorg Chem 51:7699–7710CrossRefGoogle Scholar
  46. 46.
    Rizvi MA, Zaki M, Afzal M et al (2015) Eur J Med Chem 90:876–888CrossRefGoogle Scholar
  47. 47.
    Meyer-Almes FJ, Porschke D (1993) Biochemistry 32:4246–4253CrossRefGoogle Scholar
  48. 48.
    Liu ZC, Wang BD, Yang ZY, Li Y, Qin DD, Li TR (2009) Eur J Med Chem 44:4477–4484CrossRefGoogle Scholar
  49. 49.
    Howe GM, Wu KC, Bauer WR (1976) Biochemistry 19:4339–4346CrossRefGoogle Scholar
  50. 50.
    Li DD, Tian JL, Gu W, Liu X, Yan SP (2010) J Inorg Biochem 104:171–179CrossRefGoogle Scholar
  51. 51.
    Jiang M, Li Y, Wu Z, Liu Z, Yan C (2009) J Inorg Biochem 103:833–844CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dušan Lj. Tomović
    • 1
  • Andriana M. Bukonjić
    • 1
  • Verica V. Jevtić
    • 2
  • Zoran R. Ratković
    • 2
  • Jovana V. Bogojeski
    • 2
  • Ana Đeković
    • 5
  • Ivana D. Radojević
    • 3
  • Ljiljana R. Čomić
    • 3
  • Slađana B. Novaković
    • 4
  • Goran A. Bogdanović
    • 4
  • Srećko R. Trifunović
    • 2
  • Gordana P. Radić
    • 1
  • Snežana Cupara
    • 1
  1. 1.Department of Pharmacy, Faculty of Medical SciencesUniversity of KragujevacKragujevacRepublic of Serbia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of KragujevacKragujevacRepublic of Serbia
  3. 3.Department of Biology and Ecology, Faculty of ScienceUniversity of KragujevacKragujevacRepublic of Serbia
  4. 4.Laboratory of Theoretical Physics and Condensed Matter Physics, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeRepublic of Serbia
  5. 5.State University of Novi PazarNovi PazarRepublic of Serbia

Personalised recommendations