Transition Metal Chemistry

, Volume 43, Issue 2, pp 127–136 | Cite as

Synthesis and characterization of cobalt(II) complexes with triethanolamine and succinate and/or nitrate anions

  • I. Ignatyev
  • Y. Kondratenko
  • V. Fundamensky
  • T. Kochina


Three Co(II) complexes of triethanolamine (TEA) namely [Co(N(CH2CH2OH)3)2](NO3)2 (1), [Co(N(CH2CH2OH)3)2](OOC(CH2)2COO) (2) and [Co2(N(CH2CH2OH)3)2(NO3)2(OOC(CH2)2COO)] (3) were synthesized and characterized by physicochemical and spectroscopic methods. The first two complexes are cationic and are formed by Co2+ cations coordinated by two TEA ligands plus nitrate or succinate anions, respectively. The equilibrium geometries of the [Co(TEA)2]2+ cations have been optimized at the B3LYP/cc-pVDZ level. Complex 3 is a product of the reaction between cationic complexes 1 and 2.



The scientific research was performed at the “Centre for Optical and Laser Materials Research,” “Chemical Analysis and Materials Research Centre,” “Centre for X-ray Diffraction Studies,” “Magnetic Resonance Research Centre” and “Thermogravimetric and Calorimetric Research Centre” of Research park of St. Petersburg State University.


The work was supported by the Grant of St. Petersburg State University (No. and Grant of FASIE [No. 10280GU (16.06.2016)].

Supplementary material

11243_2017_199_MOESM1_ESM.docx (664 kb)
Supplementary material 1 (DOCX 663 kb)


  1. 1.
    Voronkov MG, Baryshok VP (2004) Pharm Chem J 38:3–9CrossRefGoogle Scholar
  2. 2.
    Han A, Li L, Qing K, Qi X, Hou L, Luo X, Shi S, Ye F (2013) Bioorg Med Chem Lett 23:1310–1314CrossRefGoogle Scholar
  3. 3.
    Voronkov MG, Baryshok VP (2010) Her Russ Acad Sci 80:514–521CrossRefGoogle Scholar
  4. 4.
    Voronkov MG, Rasulov MM (2007) Pharm Chem J 41:1–6CrossRefGoogle Scholar
  5. 5.
    Voronkov MG, Kolesnikova OP, Rasulov MM, Mirskova AN (2007) Pharm Chem J 41:244–248CrossRefGoogle Scholar
  6. 6.
    Kolesnikova OP, Mirskova AN, Adamovich SN, Mirskov RG, Kudaeva OT, Voronkov MG (2009) Dokl Biol Sci 425:107–111CrossRefGoogle Scholar
  7. 7.
    Kondratenko Y, Kochina T, Fundamensky V, Ignatyev I, Panikorovskii T, Nyanikova G (2016) J Mol Liq 221:1218–1224CrossRefGoogle Scholar
  8. 8.
    Kondratenko YA, Kochina TA, Fundamenskii VS, Vlasov YG (2015) Russ J Gen Chem 85:2710–2714CrossRefGoogle Scholar
  9. 9.
    Kondratenko YA, Kochina TA, Fundamenskii VS (2016) Glass Phys Chem 42:621–626CrossRefGoogle Scholar
  10. 10.
    Topcu Y, Andac O, Yilmaz V, Harrison W (2002) J Coord Chem 55:805–815CrossRefGoogle Scholar
  11. 11.
    Ashurov JM, Obidova NJ, Abdireymov HB, Ibragimov BT (2016) Acta Cryst E72:420–423Google Scholar
  12. 12.
    Haukka M, Kirillov AM, Kopylovich MN, Pombeiro AJL (2005) Acta Cryst E61:m2746–m2748Google Scholar
  13. 13.
    Naiini AA, Young V, Verkade JG (1995) Polyhedron 14:393–400CrossRefGoogle Scholar
  14. 14.
    Andac O, Topcu Y, Yilmaz VT, Guven K (2001) Acta Cryst C57:1381–1384Google Scholar
  15. 15.
    Yilmaz VT, Senel E (2004) Transit Metal Chem 29:336–342CrossRefGoogle Scholar
  16. 16.
    Ashurov JM, Ibragimov AB, Ibragimov BT (2015) Polyhedron 102:441–446CrossRefGoogle Scholar
  17. 17.
    Yesilel OZ, Olmez H, Ucar I, Bulut A, Kazak C (2005) Z Anorg Allg Chem 631:3100–3103CrossRefGoogle Scholar
  18. 18.
    Ushakov IA, Voronov VK, Adamovich SN, Mirskov RG, Mirskova AN (2016) J Mol Struct 1103:125–131CrossRefGoogle Scholar
  19. 19.
    Karadag A, Yilmaz VT, Thoene C (2001) Polyhedron 20:635–641CrossRefGoogle Scholar
  20. 20.
    Kondratenko Y, Fundamensky V, Ignatyev I, Zolotarev A, Kochina T, Ugolkov V (2017) Polyhedron 130:176–183CrossRefGoogle Scholar
  21. 21.
    Kirillov AM, Kopylovich MN, Kirillova MV, Haukka M, da Silva MFCG, Pombeiro AJL (2005) Angew Chem 117:4419–4423CrossRefGoogle Scholar
  22. 22.
    Wang D, Kuang D, Zhang F, Tang S, Jiang W (2014) Eur J Org Chem 2014(2):315–318. CrossRefGoogle Scholar
  23. 23.
    Zhu M, Wei X, Li B, Yuan Y (2007) Tetrahedron Lett 48:9108–9111CrossRefGoogle Scholar
  24. 24.
    Shmakov VN, Konstantinov YM, Kuznetsova GA, Voronkov MG (2006) Russ J Dokl Biol Sci 410:414–415CrossRefGoogle Scholar
  25. 25.
    Kolesnikova OP, Mirskova AN, Adamovich SN, Kuznetsova GA, Kudaeva OT, Goldina IA, Safronova IV, Mirskov RG, Gaidul KV, Voronkov MG (2009) Bull Sib Branch RAMS 6(140):73–79 (Russian) Google Scholar
  26. 26.
    Rasulov MM, Voronkov MG, Nurbekov MK, Zvereva MV, Mirskova AN, Adamovich SN, Mirskov RG (2012) Dokl Biochem Biophys 444:147–148CrossRefGoogle Scholar
  27. 27.
    Song H, Lee SY (2006) Enzyme Microbial Technol 39:352–361CrossRefGoogle Scholar
  28. 28.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  29. 29.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341CrossRefGoogle Scholar
  30. 30.
    Beckeм AD (1963) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  31. 31.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  32. 32.
    Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107CrossRefGoogle Scholar
  33. 33.
    Frisch MJ et al (2009) Gaussian 09, Revision B.01. Gaussian, WallingfordGoogle Scholar
  34. 34.
    Mootz D, Brodalla D, Wiebcke M (1989) Acta Cryst C45:754–757Google Scholar
  35. 35.
    Fundamensky VS, Kochina TA, Kondratenko YA, Zolotarev AA, Vlasov YG, Ignatyev IS (2017) J Mol Liq 230:113–120CrossRefGoogle Scholar
  36. 36.
    Warner JW, Bartell LS, Blinder SM (1980) Int J Quantum Chem 18:921–935CrossRefGoogle Scholar
  37. 37.
    Bellamy LJ, Owen AJ (1969) Spectrochim Acta 258:329–333CrossRefGoogle Scholar
  38. 38.
    Emsley J (1980) Chem Soc Rev 9:91–124CrossRefGoogle Scholar
  39. 39.
    Yilmaz VT, Topcu Y, Karadag A (2002) Thermochim Acta 383:129–135CrossRefGoogle Scholar
  40. 40.
    Caires CFJ, Lima LS, Carvalho CT, Ionashiro M (2010) Ecl Quím 35:73–80CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Radiochemistry, Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate Chemistry RASSt. PetersburgRussia
  3. 3.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations