Skip to main content
Log in

Transition metal tetrapentafluorophenyl porphyrin catalyzed hydrogen evolution from acetic acid and water

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The performance of Cu (1), Co (2) and Zn (3) complexes of meso-tetrakis(pentafluorophenyl)porphyrin in the electrocatalyzed evolution of hydrogen has been investigated. In acetic acid media, hydrogen evolution turnover frequency (TOF) values for complexes 1, 2 and 3 were 22.1, 19.8 and 18.1 h−1, respectively, at an overpotential of 942 mV versus Ag/AgNO3. In buffer solution at pH 7.0, the corresponding hydrogen evolution TOF values increased dramatically, to 266, 234, 218 h−1 at a similar overpotential of 878 mV versus SHE. The Faradaic yields of 1, 2, and 3 for sustained proton reduction in catalytic experiments at a glassy carbon electrode over 72 h were 89.7, 90.4 and 91.0%, respectively, with no observable catalyst decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A (2011) Science 332:805–809

    Article  CAS  Google Scholar 

  2. Gust D, Moore TA, Moore AL (2009) Acc Chem Res 42:1890–1898

    Article  CAS  Google Scholar 

  3. Balzani V, Credi A, Venturi M (2008) ChemSusChem 1:26–58

    Article  CAS  Google Scholar 

  4. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729–15735

    Article  CAS  Google Scholar 

  5. McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB (2014) Chem Sci 5:865–878

    Article  CAS  Google Scholar 

  6. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273–4303

    Article  CAS  Google Scholar 

  7. Vignais PM, Billoud B (2007) Chem Rev 107:4206–4272

    Article  CAS  Google Scholar 

  8. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Acc Chem Res 42:1995–2004

    Article  CAS  Google Scholar 

  9. Helm ML, Stewart MP, Bullock RM, Dubios MR, Dubios DL (2011) Science 333:863–866

    Article  CAS  Google Scholar 

  10. Rose MJ, Gray HB, Winkler JR (2012) J Am Chem Soc 134:8310–8313

    Article  CAS  Google Scholar 

  11. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 499:66–69

    Article  CAS  Google Scholar 

  12. Li X, Wang M, Zheng D, Han K, Dong J, Sun L (2012) Energ Environ Sci 5:8220–8224

    Article  CAS  Google Scholar 

  13. Cao JP, Fang T, Fu LZ, Zhou LL, Zhan SZ (2014) Int J Hydrog Energy 39:13972–13978

    Article  CAS  Google Scholar 

  14. Fang T, Lu HX, Zhao JX, Zhan SZ, Lv QY (2015) J Mol Catal A Chem 396:304–309

    Article  CAS  Google Scholar 

  15. Sirbu D, Turta C, Gibson EA, Benniston AC (2015) Dalton Trans 44:14646–14655

    Article  CAS  Google Scholar 

  16. Kleingardner JG, Kandemir B, Bren KL (2013) J Am Chem Soc 136:4–7

    Article  Google Scholar 

  17. Singh WM, Baine T, Kudo S, Tian SL, Ma XAN, Zhou HY, DeYonker NJ, Pham TC, Bollinger JC, Baker DL, Yan B, Webster CE, Zhao X (2012) Angew Chem Int Ed 51:5941–5944

    Article  CAS  Google Scholar 

  18. Mondal B, Sengupta K, Rana A, Mahammed A, Botoshansky M, Dey SG, Gross Z, Dey A (2013) Inorg Chem 52:3381–3387

    Article  CAS  Google Scholar 

  19. Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lao W, Cao R (2014) Phys Chem Chem Phys 16:1883–1893

    Article  CAS  Google Scholar 

  20. Jacques PA, Artero V, Pécaut J, Fontecave M (2009) Proc Natl Acad Sci USA 106:20627–20632

    Article  CAS  Google Scholar 

  21. Zagal JH, Bedioui F, Dodelet JP (2006) N4—Macrocyclic Metal Complexes. Springer Science—Business Media LLC, New York

  22. Kellett RM, Spiro TG (1985) Inorg Chem 24:2373–2377

    Article  CAS  Google Scholar 

  23. Kellett RM, Spiro TG (1985) Inorg Chem 24:2378–2382

    Article  CAS  Google Scholar 

  24. Abe T, Taguchi F, Imaya H, Zhao F, Zhang J, Kaneko M (1998) Polym Adv Technol 9:559–562

    Article  CAS  Google Scholar 

  25. Beyene BB, Mane SB, Hung CH (2015) Chem Commun 51(81):15067–15070

    Article  CAS  Google Scholar 

  26. Han YZ, Fang HY, Jing HZ, Sun HL, Lei HT, Lai WZ, Cao R (2016) Angew Chem Int Ed 55:5457–5462

    Article  CAS  Google Scholar 

  27. Alenezi K (2017) Int J Electrochem Sci 12:812–818

    Article  CAS  Google Scholar 

  28. Canales C, Varas-Concha F, Mallouk TE, Ramírez G (2016) Appl Catal B Environ 188:169–176

    Article  CAS  Google Scholar 

  29. Wang Q, Zhang Y, Yu L, Yang H, Mahmood MHR, Liu HY (2014) J Porphyrins Phthalocyanines 18:316–325

    Article  CAS  Google Scholar 

  30. Wang HH, Yuan HQ, Mahmood MHR, Jiang YY, Cheng F, Shi L, Liu HY (2015) Rsc Adv 5:97391–97399

    Article  CAS  Google Scholar 

  31. Yuan HQ, Wang HH, Kandhadi J, Wang H, Zhan SZ, Liu HY (2017) Appl Organomet Chem. doi:10.1002/aoc.3773

  32. Musselman BD, Watson JT, Chang CK (1986) J Mass Spectrom 21:215–219

    CAS  Google Scholar 

  33. Wu YY, Villagran, Dino (2016) Abstracts of papers, 251st ACS national meeting & exposition, San Diego, CA, United States

  34. Hu XL, Brunschwig BS, Peters JC (2007) J Am Chem Soc 129:8988–8998

    Article  CAS  Google Scholar 

  35. Lindsey JS, Wagner RW (1989) J Org Chem 54:828–836

    Article  CAS  Google Scholar 

  36. Thoi VS, Karunadasa HI, Surendranath Y, Long JR, Chang CJ (2012) Energy Environ Sci 5:7762–7770

    Article  CAS  Google Scholar 

  37. Karunadasa HI, Chang CJ, Long JR (2010) Nature 464:1329–1333

    Article  CAS  Google Scholar 

  38. Felton GA, Glass RS, Lichtenberger DL, Evans DH (2006) Inorg Chem 45:9181–9184

    Article  CAS  Google Scholar 

  39. Karunadasa HI, Montalvo E, Sun YJ, Majda M, Long JR, Chang CJ (2012) Science 335:698–702

    Article  CAS  Google Scholar 

  40. Collin JP, Jouaiti A, Sauvage JP (1988) Inorg Chem 27:1986–1990

    Article  CAS  Google Scholar 

  41. Bernhardt PV, Jones LA (1999) Inorg Chem 38:5086–5090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (Nos. 21371059, 21671068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Yang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DX., Yuan, HQ., Wang, HH. et al. Transition metal tetrapentafluorophenyl porphyrin catalyzed hydrogen evolution from acetic acid and water. Transit Met Chem 42, 773–782 (2017). https://doi.org/10.1007/s11243-017-0185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0185-1

Navigation